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Super Learner
Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard

Abstract

When trying to learn a model for the prediction of an outcome given a set of covariates, a
statistician has many estimation procedures in their toolbox. A few examples of these candidate
learners are: least squares, least angle regression, random forests, and spline regression. Previous
articles (van der Laan and Dudoit (2003); van der Laan et al. (2006); Sinisi et al. (2007))
theoretically validated the use of cross validation to select an optimal learner among many
candidate learners. Motivated by this use of cross validation, we propose a new prediction method
for creating a weighted combination of many candidate learners to build the super learner. This
article proposes a fast algorithm for constructing a super learner in prediction which uses V-fold
cross-validation to select weights to combine an initial set of candidate learners. In addition, this
paper contains a practical demonstration of the adaptivity of this so called super learner to various
true data generating distributions. This approach for construction of a super learner generalizes to
any parameter which can be defined as a minimizer of a loss function.

KEYWORDS: cross-validation, loss-based estimation, machine learning, prediction
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1 Introduction

Numerous methods exist to learn from data the best predictor of a given
outcome based on a sample of n independent and identically distributed
observations Oi = (Yi, Xi), Yi the outcome of interest, and Xi a vector of
input variables, i = 1, . . . , n. A few examples include decision trees, neu-
ral networks, support vector regression, least angle regression, logic regres-
sion, poly-class, Multivariate Adaptive Regression Splines (MARS), and the
Deletion/Substitution/Addition (D/S/A) algorithm. Such learners can be
characterized by the mechanism used to search the parameter space of pos-
sible regression functions. For example, the D/S/A algorithm (Sinisi and
van der Laan, 2004) uses polynomial basis functions, while logic regression
(Ruczinski et al., 2003) constructs Boolean expressions of binary covariates.
The performance of a particular learner depends on how effective its searching
strategy is in approximating the optimal predictor defined by the true data
generating distribution. Thus, the relative performance of various learners
will depend on the true data-generating distribution. In practice, it is gener-
ally impossible to know a priori which learner will perform best for a given
prediction problem and data set. To solve the problem, some researchers have
proposed combining learners in various methods and have exhibited better
performance over a single candidate learner (Freund et al., 1997; Hansen,
1998), but there is concern that these methods may over-fit the data and
may not be the optimal way to combine the candidate learners.

The framework for unified loss-based estimation (van der Laan and Du-
doit, 2003) suggests a solution to this problem in the form of a new learner,
termed the “super learner”. In the context of prediction, this learner is itself
a prediction algorithm, which applies a set of candidate learners to the ob-
served data, and chooses the optimal learner for a given prediction problem
based on cross-validated risk. Theoretical results show that such a super
learner will perform asymptotically as well as or better than any of the can-
didate learners (van der Laan and Dudoit, 2003; van der Laan et al., 2006).

To be specific, consider some candidate learners. Least Angle Regression
(LARS) (Efron et al., 2004) is a model selection algorithm related to the
lasso. Logic Regression (Ruczinski et al., 2003) is an adaptive regression
methodology that attempts to construct predictors as Boolean combinations
of binary covariates. The D/S/A algorithm (Sinisi and van der Laan, 2004)
for polynomial regression data-adaptively generates candidate predictors as
polynomial combinations of continuous and/or binary covariates, and is avail-
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Method R Package Authors
Least Angle Regression lars Hastie and Efron
Logic Regression LogicReg Kooperberg and Ruczinski
D/S/A DSA Neugebauer and Bullard
Regression Trees rpart Therneau and Atkinson
Ridge Regression MASS Venables and Ripley
Random Forests randomForest Liaw and Wiener
Adaptive Regression Splines polspline Kooperberg

Table 1: R Packages for Candidate Learners. R is available at http://www.r-
project.org

able as an R package at http://www.stat.berkeley.edu/users/laan/Software/.
Classification and Regression Trees (CART) (Breiman et al., 1984) builds
a recursive partition of the covariates. Another candidate learner is ran-
dom forests Breiman (2001), which is a random bootstrap version of the
regression tree. Ridge Regression (Hoerl and Kennard, 1970) minimizes a
penalized least squares with a penalty on the L2 norm of the parameter
vector. Multivariate Adaptive Regression Splines (MARS) Friedman (1991)
is an automated model selection algorithm which creates a regression spline
function. Table 1 contains citations of R packages for each of the candidate
learners. All of these methods have the option to carry out selection using
v-fold cross-validation. The selected fine-tuning parameter(s) can include
the ratio of the L1 norm of the coefficient vector in LARS to the norm of
the coefficient vector from least squares; the number of logic trees and leaves
in Logic Regression; and the number of terms and a complexity measure on
each of the terms in D/S/A.

Cross-validation divides the available learning set into a training set and
a validation set. Observations in the training set are used to construct (or
train) the learners, and observations in the validation set are used to assess
the performance of (or validate) these learners. The cross-validation selector
selects the learner with the best performance on the validation sets. In v-
fold cross-validation, the learning set is divided into v mutually exclusive and
exhaustive sets of as nearly equal size as possible. Each set and its comple-
ment play the role of the validation and training sample, respectively, giving
v splits of the learning sample into a training and corresponding validation
sample. For each of the v splits, the estimator is applied to the training
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set, and its risk is estimated with the corresponding validation set. For each
learner the v risks over the v validation sets are averaged resulting in the
so-called cross-validated risk. The learner with the minimal cross-validated
risk is selected.

It is helpful to consider each learner as an algorithm applied to empirical
distributions. Thus, if we index a particular learner with an index k, then
this learner can be represented as a function Pn → Ψ̂k(Pn) from empirical
probability distributions Pn to functions of the covariates. Consider a collec-
tion of K(n) learners Ψ̂k, k = 1, . . . , K(n), in parameter space Ψ. The super
learner is a new learner defined as

Ψ̂(Pn) ≡ Ψ̂K̂(Pn)(Pn),

where K̂(Pn) denotes the cross-validation selector described above which
simply selects the learner which performed best in terms of cross-validated
risk. Specifically,

K̂(Pn) ≡ arg min
k
EBn

∑
i,Bn(i)=1

(Yi − Ψ̂k(P
0
n,Bn

)(Xi))
2,

where Bn ∈ {0, 1}n denotes a random binary vector whose realizations define
a split of the learning sample into a training sample {i : Bn(i) = 0} and
validation sample {i : Bn(i) = 1}. Here P 1

n,Bn
and P 0

n,Bn
are the empirical

probability distributions of the validation and training sample, respectively.
The aggressive use of cross-validation is inspired by the theorem 3.1 in

van der Laan et al. (2006). The theorem is provided in the appendix.
The “oracle” selector is defined in Theorem 2 in the appendix as the

estimator, among the K(n) learners considered, which minimizes risk under
the true data-generating distribution. In other words, the oracle selector is
the best possible estimator given the set of candidate learners considered;
however, it depends on both the observed data and P0, and thus is unknown.

This theorem shows us that the super learner performs as well (in terms
of expected risk difference) as the oracle selector, up to a typically second
order term. Thus, as long as the number of candidate learners considered
(K(n)) is polynomial in sample size, the super learner is the optimal learner
in the following sense:

• If, as is typical, none of the candidate learners (nor, as a result, the
oracle selector) converge at a parametric rate, the super learner per-
forms asymptotically as well (in the risk difference sense) as the oracle
selector, which chooses the best of the candidate learners.
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• If one of the candidate learners searches within a parametric model
and that parametric model contains the truth, and thus achieves a
parametric rate of convergence, then the super learner achieves the
almost parametric rate of convergence log n/n.

Organization: The current article builds and extends this super learn-
ing methodology. In section 2 we will describe our new proposal for super
learning, also using an initial set of candidate learners and cross-validation
as above, but now allowing for semi-parametric families of the candidate
learners, and formulating the minimization of cross-validated risk as an-
other regression problem for which one can select an appropriate regression
methodology (e.g involving cross-validation or penalized regression). This is
an important improvement relative to our previous super learning proposal
by 1) extending the set of initial candidate learners into a large family of
candidate learners one obtains by combining the initial candidate learners
according to a parametric or semi-parametric model, thereby obtain a po-
tentially much more flexible learner, and 2) by controlling over-fitting of the
cross-validated risk through the use of data adaptive regression algorithms
using cross-validation or penalization itself. Importantly, these gains come at
no cost regarding computing time. In Section 3 we investigate the practical
performance of this new super learning algorithm based on simulated as well
as a number of real data sets.

2 The proposed super learning algorithm

Suppose one observes n i.i.d. observations Oi = (Xi, Yi) ∼ P0, i = 1, . . . , n,
and the goal is to estimate the regression ψ0(X) = E0(Y | X) of Y ∈ Y on
X ∈ X . The regression can be defined as the minimizer of the expectation
of the squared error loss function:

0 = arg minE0L(O,ψ),

where L(O,ψ) = (Y − ψ(X))2. The proposed super learner immediately
applies to any parameters that can be defined as minimizers of a loss function
L(O,ψ) over a parameter space Ψ, but the article focuses on the prediction
problem using the squared error loss function.

Let Ψ̂j, j = 1, . . . , J , be a collection of J candidate learners, which rep-
resent mappings from the empirical probability distribution Pn into the pa-
rameter space Ψ consisting of functions of X.
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The proposed super learner uses V -fold cross-validation. Let
v ∈ {1, . . . , V } index a sample split into a validation sample V (v) ⊂ {1, . . . , n}
and training sample (the complement of V (v)) T (v) ⊂ {1, . . . , n}, where
V (v) ∪ T (v) = {1, . . . , n}. Here we note that the union, ∪Vv=1V (v) =
{1, . . . , n}, of the validation samples equals the total sample, and the val-
idations samples are disjoint: V (v1) ∩ V (v2) = ∅ for v1 6= v2. For each
v ∈ {1, . . . , V }, let, ψnjv ≡ Ψ̂j(PnT (v)) be the realization of the jth-estimator

Ψ̂j when applied to the training sample PnT (v).
For an observation i, let v(i) denote the validation sample it belongs to,

i = 1, . . . , n. We now construct a new data set of n observations as follows:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) is the vector consisting of
the J predicted values according to the J estimators trained on the training
sample PnT (v(i)), i = 1, . . . , n. Let Z be the set of possible outcomes for Z.

Minimum cross-validated risk predictor: Another input of this su-
per learning algorithm is yet another user-supplied prediction algorithm Ψ̃
that estimates the regression E(Y | Z) of Y onto Z based on the data set
(Yi, Zi), i = 1, . . . , n. For notational convenience, we will denote {(Yi, Zi) :
i = 1, . . . , n} with Pn,Y,Z , so that Ψ̃ is a mapping from Pn,Y,Z to ˜

ψ

Ψ(Pn,Y,Z) :
Z → Y , where the latter is a function from Z to Y . We will refer to this
algorithm Ψ̃ as the minimum cross-validated risk predictor since it aims to
minimize the cross-validated risk, ˜ →

∑n
i=1(Yi − ψ

ψ

˜(Zi))
2, over a set of

candidate functions ˜ from Z into Y , although, we allow penalization or
cross-validation to avoid over-fitting of this cross-validated risk criteria.

This now defines a mapping Ψ̂∗ from the original data Pn ≡ {Yi, Xi) : i =
1, . . . , n} into the predictor

Ψ̃
(
{Yi, Zi = (Ψ̂j(PnT (vi))(Xi) : j = 1, . . . , J)) : i = 1, . . . , n}

)
obtained by applying the cross-validated risk minimizer Ψ̃ to Pn,Y,Z =

{(Yi, Zi) : i = 1, . . . , n}. Denote ψ∗n = Ψ̂∗(Pn) as the actual obtained predic-
tor when one applies the learner Ψ̂∗ to the original sample Pn. We note that
∗
n ∈ Ψ∗ ≡ {f : Z → Y} is a function of Z into the outcome set Y for Y .

The super learner for a value X based on the data (i.e., Pn) is now given
by

Ψ̂(Pn)(X) ≡ Ψ̂∗(Pn)((Ψ̂j(Pn)(X), j = 1, . . . , J). (1)

In words, the super learner of Y for a value X is obtained by evaluating the
predictor ψ∗n = Ψ̂∗(Pn) at the J predicted values, Ψ̂j(Pn)(X), at X of the J
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candidate learners. Figure 1 contains a flow diagram for the steps involved
in the super learner.
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by combining predictions from

each candidate learner (step 0)
with m(z;β) (steps 1-4)

Figure 1: Flow Diagram for Super Learner

2.1 Specific choices of the minimum cross-validated
risk predictor.

Parametric minimum cross-validated risk predictor: Consider a few
concrete choices that aim to fit a regression of Y onto the J predicted values
Z based on the corresponding training samples from (Yi, Zi), i = 1, . . . , n for
the algorithm Ψ̂∗. Define the cross-validated risk criteria:

RCV (β) ≡
n∑
i=1

(Yi −m(Zi | β))2,

where one could use, for example, the linear regression model m(z | β) =
βz. If Y ∈ {0, 1}, then one could use the logistic linear regression model
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m(z | β) = 1/(1 + exp(−βz)), if one allows predictions in the range of
[0, 1], or, if one wants a predictor mapping into {0, 1}, then we can choose
m(z | α0, β) ≡ I(1/(1 + exp(−βz)) > α0) as the indicator that the logistic
regression score exceeds a cut-off α0. Let βn = arg minβ RCV (β) be the least
squares or MLE estimator, and let

∗
n(z) ≡ m(z | βn).

One could also estimate β with a constrained least squares regression estima-
tor such as penalized L1-regression (Lasso), penalized L2 regression (shrink-
age), where the constraints are selected with cross-validation, or one could
restrict β to the set of positive weights summing up till 1.

Since the candidate learners are all trying to predict the same outcome Y
there is a potential for collinearity or near collinearity in the predicted Z data
set. In practice, the user could simply remove one of the troublesome candi-
date learners, which is often the default in most statistical regression software
when collinearity is present. Near collinearity can make the interpretation
of ψ∗n(z) difficult, especially if evaluating the magnitude of the parameters
βn. We recommend caution in interpretation of the parameter estimates but
note that near collinearity should not effect the prediction accuracy of the
super learner.

Data adaptive minimum cross-validated risk predictor: There is
no need to restrict ψ∗n to parametric regression fits. For example, one could
define ψ∗n in terms of the application of a particular data adaptive (machine
learning) regression algorithm to the data set (Yi, Zi), i = 1, . . . , n, such as
CART, D/S/A, or MARS, among others. In fact, one could apply a super
learning algorithm itself to estimate E(Y | Z). In this manner one can let
the data speak in order to build a good predictor of Y based on covariate
vector Z based on (Yi, Zi), i = 1, . . . , n.

Thus, this super learner is indexed, beyond the choice of initial candidate
estimators, by a choice of minimum cross-validated risk predictor. As a con-
sequence, the proposal provides a whole class of tools indexed by an arbitrary
choice of regression algorithm (i.e., ψ∗n) to map a set of candidate learners
into a new cross-validated estimator (i.e. super learner). In particular, it
provides a new way of using the cross-validated risk function, which goes
beyond minimizing the cross-validated risk over a set of candidate learners.
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3 Finite sample result and asymptotics for

the super learner.

An immediate consequence of Theorem 2 above is the following result for the
proposed super learner (1), which provides for the case that the minimum
cross-validated risk predictor is based on a parametric regression model.

Theorem 1. Assume P ((Y,X) ∈ Y × X ) = 1, where Y is a bounded set in
IR, and X is a bounded Euclidean set. Assume that the candidate estimators
map into Y: P (Ψ̂j(Pn) ∈ Y , j = 1, . . . , J) = 1.

Let v ∈ {1, . . . , V } index a sample split into a validation sample V (v) ⊂
{1, . . . , n} and corresponding training sample T (v) ⊂ {1, . . . , n} (complement
of V (v)), where V (v) ∪ T (v) = {1, . . . , n}, and ∪Vv=1V (v) = {1, . . . , n}. For
each v ∈ {1, . . . , V }, let, ψnjv ≡ Ψ̂j(PnT (v)), X → Y, be the realization of the

j-th estimator Ψ̂j when applied to the training sample T (v).
For an observation i let v(i) be the validation sample observation i be-

longs to, i = 1, . . . , n. Construct a new data set of n observations defined as:
(Yi, Zi), where Zi ≡ (ψnjv(i)(Xi) : j = 1, . . . , J) ∈ YJ is the J-dimensional
vector consisting of the J predicted values according to the J estimators
trained on the training sample T (v(i)), i = 1, . . . , n.

Consider a regression model z → m(z | α) for E(Y | Z) indexed by a
α ∈ A representing a set of functions from YJ into Y. Consider a grid (or
any finite subset) An of α-values in the parameter space A. Let K(n) =| An |
be the number of grid points which grows at most at a polynomial rate in n:
K(n) ≤ nq for some q <∞.

Let

αn ≡ arg min
α∈An

n∑
i=1

(Yi −m(Zi | α))2.

Consider the regression estimator ψn : X → Y defined as

n(x) ≡ m((ψjn(x) : j = 1, . . . , J) | αn).

For each α ∈ A, define the candidate estimator Ψ̂α(Pn) ≡ m((Ψ̂j(Pn) :
j = 1, . . . , J) | α): i.e.

Ψ̂α(Pn)(x) = m((Ψ̂j(Pn)(x) : j = 1, . . . , J) | α).
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Consider the oracle selector of α:

α̃n ≡ arg min
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0),

where

d(ψ, ψ0) = E0(L(X,ψ)− L(X,ψ0)) = E0(ψ(X)− ψ0(X))2.

For each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤

(1 + δ)E min
α∈An

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0) + C(δ)
V log n

n
.

Thus, if

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)
logn
n

→ 0 as n→∞, (2)

then it follows that the estimator Ψ̂αn is asymptotically equivalent with the
oracle estimator Ψ̂α̃n when applied to samples of size (1− 1/V )n:

1
V

∑V
v=1Ed(Ψ̂αn(PnT (v)), ψ0)

Eminα∈An

1
V

∑V
v=1 d(Ψ̂α(PnT (v)), ψ0)

→ 1 as n→∞.

If (2) does not hold, then it follows that Ψ̂αn achieves the (log n)/n rate:

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) = O

(
log n

n

)
.

Discussion of conditions. The discrete approximation An of A used in
this theorem is typically asymptotically negligible. For example, if A is a
bounded Euclidean set, then the distance between neighboring points on the
grid can be chosen as small as 1/nq for some q < ∞ so that minimizing
a criteria over such a fine grid An versus minimizing over the whole set

9
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A results in asymptotically equivalent procedures. For example, if α is a
Euclidean parameter and ‖ m(· | α1)−m(· | α2) ‖∞< C ‖ α1−α2 ‖ for some
C < ∞, where ‖ · ‖∞ denotes the supremum norm, then it follows that for
each δ > 0 we have that there exists a C(δ) <∞ such that

1

V

V∑
v=1

Ed(Ψ̂αn(PnT (v)), ψ0) ≤

(1 + δ)Emin
α∈A

1

V

V∑
v=1

d(Ψ̂α(PnT (v)), ψ0) + C(δ)
log n

n
,

where αn = arg minα∈A
∑n

i=1(Yi −m(Zi | α))2. The other conclusions of the
theorem now also apply.

This theorem implies that the selected prediction algorithm Ψ̂αn will ei-
ther perform asymptotically as well (up till the constant) as the best estima-
tor among the family of estimators {Ψ̂α : α ∈ A} when applied to samples of
size n(1− 1/V ), or achieve the parametric model rate 1/n up till a log n fac-
tor. By a simple argument as presented in van der Laan and Dudoit (2003),
Dudoit and van der Laan (2005) and van der Vaart et al. (2006), it follows
that by letting the V = Vn in the V-fold cross-validation scheme converge
to infinity at a slow enough rate relative to n, then either ψn = Ψ̂αn(Pn)
performs asymptotically as well (up till the constant) as the best estimator
among the estimators {Ψ̂α : α} applied to the full sample Pn, or it achieves
the parametric rate of convergence up till the log n factor.

The take home message of this theorem is that our super learner will
perform asymptotically as well as the best learner among the family of can-
didate learners Ψ̂α indexed by α. By choosing the regression model m(· | α)
so that there exist a αj so that m(Z | αj) = Zj for each j = 1, . . . , J (e.g.,
m(Z | α) = αZ), then it follows, in particular, that the resulting prediction
algorithm asymptotically outperforms each of the initial candidate estima-
tors Ψ̂j. More importantly and practically, the set of candidate estimators

Ψ̂α can include interesting combinations of these J estimators which exploit
the strengths of various of these estimators for the particular data generating
distribution P0 instead of focusing on one of them. For example, if one uses
the linear regression model m(Z | α) = αZ, then the candidate estimators
{Ψ̂α : α} include all averages of the J estimators, including convex combina-
tions. As becomes evident in our data analysis and simulation results, the
selected super learner ψ∗n based on a linear (or logistic) regression model is
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often indeed (or logistic function of) a weighted average of competing esti-
mators in which various of the candidate learners significantly contribute to
the average.

4 Simulation results

In this section, we conducted 3 simulation studies to evaluate the working
characteristics of the super learner. These simulations all involve a continu-
ous response variable. For the first simulation, the true model is:

Yi = 2w1w10 + 4w2w7 + 3w4w5 − 5w6w10 + 3w8w9 + w1w2w4

−2w7(1− w6)w2w9 − 4(1− w10)w1(1− w4) + ε (3)

where wj ∼ Binomial(p = 0.4), j = 1, . . . , 10 and ε ∼ Normal(0, 1).
Each observation consists of the 10 dimensional covariate vector W, and
the continuous response variable Y. The parameter of interest is ψ0(W ) =
E0(Y|W). The simulated learning data set contains a sample of 500 obser-
vations (i=1,. . . ,500) from model 3.

We applied the super learner to the learning set using five candidate
learners. The first candidate was a simple linear regression model with only
main terms, which will be estimated with regular least squares. The sec-
ond candidate was main terms LARS. Internal cross-validation (i.e. another
layer of cross-validation inside each training split) was used the estimate
the optimal fraction parameter, λ0 ∈ (0, 1). The third candidate was the
D/S/A algorithm for data-adaptive polynomial regression. For the D/S/A
algorithm, we allowed interaction terms and restricted the model to less than
50 terms. The D/S/A uses internal cross-validation to determine the best
model in this model space. The fourth candidate was logic regression where
the number of trees was selected to be 5 and the number of leaves to be
20 based on 10-fold cross validation of the learning data set. For the logic
regression fine-tuning parameters, we searched over #trees ∈ {1, . . . , 5} and
#leaves ∈ {1, . . . , 20}. The final candidate algorithm was random forests.
Table 1 contains references for the R packages of each canidate learner.

We applied the super learner with 10-fold cross-validation on the learning
set. Applying the prediction to all 10 folds of the learning set gives us
the predicted values Zi ≡ (Ψ̂jν(i)(Wi) : j = 1, . . . , 5) and corresponding Yi
for each observation i = 1, . . . , 500. We then proposed the linear model
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method RMSPE βn
Least Squares 1.00 0.038

LARS 1.15 -0.171
D/S/A 0.22 0.535
Logic 0.32 0.274

Random Forest 0.42 0.398
Super Learner 0.20

Table 2: Simulation Example 1: Estimates of the relative mean squared
prediction error (compared to least squares) based on a learning sample of
500 observations and the evaluation sample M=10,000. The estimates for β
in the super learner are also reported in the right column (αn = −0.018).

E(Y|Z) = α + βZ and used least squares to estimate the intercept α and
parameter vector β based on (Yi, Zi), i = 1, . . . , n.

After having obtained the fit αn, βn of α, β, next, each of the candidate
learners was fit on the entire learning set to obtain Ψ̂j(Pn)(W ), which gives

the super learner Ψ̂(Pn)(W ) = αn + βn(Ψ̂j(Pn)(W ) : j = 1, . . . , 5)) when
applied to a new covariate vector W .

To evaluate the super learner next to each of the candidate learners, an
additional 10,000 observations are simulated from the same data generating
distribution. This new sample is denoted the evaluation sample. Using the
models on the learning data set, we calculated the mean squared prediction
error (MSPE) on this new evaluation data set for the super learner and
each of the candidate learners. Table 2 has the results for the relative mean
squared prediction error (RMPSE), where RMSPE(x) =
MSPE(x)/MSPE(least squares). Among the candidate learners, the
D/S/A algorithm appears to have the smallest error, but the super learner
improves on the D/S/A fit. The estimates βn all appear to be nonzero
except for the simple linear regression model. The super learner can combine
information from the candidate learners to build a better predictor.

The second simulation considers continuous covariates as opposed to bi-
nary covariates from the first simulation. Let X be a 20 dimensional multi-
variate normal random vector and X ∼ Np(0, 16∗ Idp) where p = 20 and Idp
is the p-dimensional identity matrix. Each column of X is a covariate in the
models used below. The outcome is defined as:

Yi = X1X2 +X2
10 −X3X17 −X15X4 +X9X5 +X19 −X2

20 +X9X8 + ε, (4)

12

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 25

DOI: 10.2202/1544-6115.1309

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/19/15 10:14 AM



where ε ∼ Normal(0, 16) and Xj is the jth column of X. From this model,
200 observations were simulated for the learning data set and an additional
5,000 were simulated for the evaluation data set similar to the first simulation.
The super learner was applied with the following candidate learners:

• Simple linear regression with all 20 main terms.

• LARS with internal cross-validation to find the optimal fraction.

• D/S/A with internal cross-validation to select the best model with
fewer than 25 terms allowing for interaction and quadratic terms.

• Ridge regression with internal cross-validation to select the optimal L2
penalty parameter.

• Random forests with 1,000 trees.

• Adaptive regression splines.

Table 3 contains the results for the second simulation. As in the first
simulation, the relative mean squared prediction error is used to evaluate
the candidate learners and the super learner. For this model, simple linear
regression, LARS, and ridge regression all appear to have the same results.
Random forests and adaptive regression splines are better able to pick up
the non-linear relationship, but among the candidate learners, the D/S/A is
the best with a relative MSPE of 0.43. But the super learner improves on
the fit even more with a relative MSPE of 0.22 by combining the candidate
learners. Since the model for ψ∗n(z) can be near collinear, the estimates of β
are often unstable and should not be used to determine the best candidate
by comparing the magnitude of the parameter estimate.

The main advantage of the proposed super learner is the adaptivity to
different data generating distributions across many studies. The third simu-
lation demonstrates this feature by creating 3 additional studies and applying
the super learner and the candidates to all 3 studies then combining the re-
sults with the second simulation and evaluating the mean square error across
all 4 studies. Equation 5 shows the data generating distributions for the 3
new studies. The data generating distribution for the covariates X is the
same as the second simulation example above. To be consistent across the 4
studies, the same candidate learners from the second simulation were applied
to these 3 new studies.
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method RMSPE βn
Least Squares 1.00 -0.73

LARS 0.91 -0.92
D/S/A 0.43 0.86
Ridge 0.98 0.61

Random Forest 0.71 1.06
MARS 0.61 0.05

Super Learner 0.22

Table 3: Simulation Example 2: Estimates of the relative mean squared
prediction error (compared to Least Squares) based on a learning sample of
200 observations and the evaluation sample M=5,000. The estimates for β
in the super learner are also reported in the right column (αn = 0.03).

Yij =



−5 +X2 + 6(X10 + 8)+ − 6(X10)+ − 7(X10 − 5)+

− 6(X15 + 6)+ + 8(X15)+ + 7(X15 − 6)+ + ε if j = 1

10 · I(X1 > −4 and X2 > 0 and X3 > −4) + ε if j = 2

−4 +X2 +
√
|X3|+ sin(X4)− .3X6X11 + 3X7

+ .3X3
8 − 2X9 − 2X10 − 2X11 + ε if j = 3

(5)

where ε ∼ Normal(0, 16) and I(x) = 1 if x is true, and 0 otherwise. For the 4
studies (the 3 new studies combined with the second simulation), the learning
sample contained 200 observations and the evaluation sample contained 5,000
observations.

Table 4 contains the results from the second simulation. For the first
study (j = 1), the adaptive regression spline function is able to estimate
well the true distribution. The super learner is not able to improve on the
fit, but it does not do worse than the best candidate algorithm. In the
second study (j = 2), the adaptive regression spline function is not the best
candidate learner. The random forests performs best in the second study,
but the super learner is able to improve on the fit. The third study (j = 3)
is similar to the first in that the adaptive regression splines function is able
to approximate the true distribution well, but the super learner does not do
worse. The squared prediction error from these three studies and the second
simulation was combined to give a mean squared prediction error for the four

14

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 25

DOI: 10.2202/1544-6115.1309

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/19/15 10:14 AM



method study 1 study 2 study 3 2nd simulation overall
Least Squares 1.00 1.00 1.00 1.00 1.00

LARS 0.91 0.95 1.00 0.91 0.95
D/S/A 0.22 0.95 1.04 0.43 0.71
Ridge 0.96 0.99 1.02 0.98 1.00

Random Forest 0.39 0.72 1.18 0.71 0.91
MARS 0.02 0.82 0.17 0.61 0.38

Super Learner 0.02 0.67 0.16 0.22 0.19

Table 4: Simulation Example 3: Estimates of the relative mean squared
prediction error (compared to least squares) based on the validation sample.
The 3 new studies from 5 are combined with the second simulation example
and the relative mean squared prediction error is reported in the overall
column.

studies. The last column in table 4 gives the relative mspe for each of the
candidate learners and the super learner. If the researcher had selected just
one of the candidate learners, they might have done well within one or two
of the studies, but overall the super learner will outperform the candidate
learners. For example, the MARS learner performs well on the first and
third study, and does well overall with a relative MSPE of 0.38, but the
super learner outperforms the MARS learner with an overall relative MSPE
of 0.19. The super learner is able to adapt to the different data generating
distributions and will outperform any candidate learner across many studies.

5 Data Analysis

We applied the super learner to the diabetes data set from the LARS package
in R. Details on the data set can be found in Efron et al. (2004). The data set
consists of 442 observations of 10 covariates (9 quantitative and 1 qualitative)
and a continuous outcome. The covariates have been standardized to have
mean zero and unit L2 norm. We selected 6 candidate learners for the super
learner. The first candidate was least squares using all 10 covariates. Next
we considered the least squares model with all possible two-way interactions
and quadratic terms on the quantitative covariates. The third and fourth
candidates were applying LARS to the main effects and all possible two-
way interaction models above. Internal cross-validation was used to select
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the “fraction” point for the prediction. The fifth candidate algorithm was
D/S/A allowing for two-way interactions and a maximum model size of 64.
The final candidate learner was the random forests algorithm. For the super
learner, we then used a linear model and estimated the parameters with least
squares.

We also applied the proposed super learner to the HIV-1 drug resistance
data set in Sinisi et al. (2007) and Rhee et al. (2006). The goal of the data is
to predict drug susceptibility based on mutations in the protease and reverse
transcriptase enzymes. The HIV-1 sequences were obtained from publicly
available isolates in the Stanford HIV Reverse Transcriptase and Protease
Sequence Database. Details on the data and previous analysis can be found
in Sinisi et al. (2007) and Rhee et al. (2006). The outcome of interest is
standardized log fold change in drug susceptibility, defined as the ratio IC50

of an isolate to a standard wildtype control isolate; IC50 (inhibitory concen-
tration) is the concentration of the drug needed to inhibit viral replication
by 50%. We focused our analysis to a single protease inhibitor, nelfinavir,
where we have 740 viral isolates in the learning sample of 61 binary predictor
covariates and one quantitative outcome.

For the HIV data set, we considered six candidate learners. The first
candidate was least squares on all main terms. The second candidate was
the LARS algorithm. Internal cross validation was used to determine the best
fraction parameter. The third candidate was logic regression. Similar to the
simulation example, we used 10-fold cross-validation on the entire learning set
to determine the parameters,#trees ∈ {1, . . . , 5} and #leaves ∈ {1, . . . , 20},
for logic regression. For the HIV data set, we selected #trees = 5 and
#leaves = 10. The fourth candidate was the CART algorithm. We also
applied the D/S/A algorithm searching over only main effects terms and a
maximum model size of 35. The final candidate was random forests. For the
super learner, a linear model was used to estimate the parameters with least
squares. All models were fit in R similar to the simulation example above.

To evaluate the performance of the super learner in comparison to each
of the candidate learners we split the learning data set into 10 validation
data sets and corresponding training data sets. The super learner and each
candidate learner was fit one each fold of the cross-validation, giving us a
honest cross-validated risk estimate to compare the super learner to each of
the candidate learners.

16

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 25

DOI: 10.2202/1544-6115.1309

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/19/15 10:14 AM



Method RCV risk βn
Least Squares (1) 1.00 0.172
Least Squares (2) 1.13 -0.003

LARS (1) 1.07 0.239
LARS (2) 1.08 0.126

D/S/A 0.98 0.481
Random Forests 1.07 0.027
Super Learner 0.98

Table 5: Super learner results for the diabetes data set. Least Squares (1)
and LARS (1) refer to the main effects only models. Least Squares (2) and
LARS (2) refer to the all possible two-way interaction models. Relative 10-
fold Honest Cross-Validation risk estimates, compared to main terms least
squares (RCV risk) are reported. βn in the super learner is reported in the
last column (αn = −6.228).

5.1 Super Learner Results

Table 5 presents results for the diabetes data analysis. A 10-fold cross-
validation estimate of the mean squared error was calculated, and the rel-
ative risk estimate is reported. We refer to the cross-validated estimate as
honest since we repeating the entire super learner in each fold of the learn-
ing data set. The relative cross-validation risk estimate (RCV) is RCV (x) =
CV (x)/CV (main terms least squares), where CV (x) is the cross-validation
risk estimate for x. Based on the cross validated estimate, the D/S/A has
the best estimate among the candidate learners. The super learner does not
appear to improve significantly on the D/S/A learner, but it does not do
any worse either. We also report the estimates αn and βn used in the su-
per learner. The D/S/A algorithm has the largest coefficient (0.481) and
appears to be given the most weight in the super learner. We also note
that least squares with all possible two-way interactions is barely used in
the super learner, with a coefficient of −0.003. This example shows how the
super learner can use cross validation to data adaptively select (i.e. give more
weight) to the better candidate predictors.

Table 6 presents the results for the HIV data analysis. Based on 10-
fold cross validated estimates of the mean squared error, main terms least
squares performs best, although random forests and LARS have similar error
estimates to least squares. In contrast to the diabetes data analysis above,
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Method RCV risk βn
Least Squares 1.00 0.552

LARS 1.03 0.075
Logic 1.52 -0.020
CART 1.77 0.076
D/S/A 1.53 -0.161

Random Forests 1.02 0.510
Super Learner 0.87

Table 6: Super learner results for the HIV data set. Relative 10-fold hon-
est cross validated risk estimates (RCV risk) compared to least squares are
reported. βn in the super learner is reported in the last column (αn = 0.027).

D/S/A does not perform well on this data set. This highlights the need
for a super learner since one candidate algorithm will not work on all data
sets. Among the candidate learners, least squares has the smallest cross-
validated risk estimate, but the super learner has a smaller risk estimate
(RCV = 0.87). We also present the estimates for α and β in table 6. Both
least squares and random forests appear to be receiving the most weight in
the super learner with coefficients 0.552 and 0.510 respectively. Again, the
super learner can use the cross validated predictions to data adaptively build
the best predictor.

These are both situations where one of the candidate learners does a good
job of prediction and gives little room for improvement for the super learner.
But these examples also demonstrate that one candidate algorithm may not
be flexible enough to perform best on all data generating distributions and
since a researcher is unlikely to know a priori which candidate learner will
work best, the super learner is a natural choice for prediction.

6 Discussion.

The new super learning approach provides both a fundamental theoretical
as well as practical improvement to the construction of a predictor. The
super learner is a flexible prediction algorithm which can perform well on
many different data generating distributions, and utilizes cross-validation
to protect against over-fitting. We wish to stress that the theory suggests
that to achieve the best performance one should not apply this algorithm

18

Statistical Applications in Genetics and Molecular Biology, Vol. 6 [2007], Iss. 1, Art. 25

DOI: 10.2202/1544-6115.1309

Brought to you by | Purdue University Libraries
Authenticated

Download Date | 5/19/15 10:14 AM



to a restricted set of candidate learners, but one should aim to include any
available sensible learners. In addition, the amount of computations does
not exceed the amount of computations it takes to calculate each of the
candidate learners on the training and full data sets. In our simulations
we used a particular set of available learners only because they were easily
available as R functions. Thus, the potential for improving learners applies
to a very wide array of practical problems.

Our results generalize to parameters which can be defined as minimizers
of a loss function, including (unknown) loss functions indexed by parameters
of the true data generating distribution (van der Laan and Dudoit (2003)).
In particular, the super learner approach applies to maximum likelihood es-
timation in semiparametric or nonparametric models for the data generating
distribution, and to targeted maximum likelihood estimation with respect to
a particular smooth functional of the density of the data, as presented in
van der Laan and Rubin (2007).

7 Appendix

ψ

Under the Assumption A1 that the loss function L(O,ψ) = (Y − ψ(X))2

is uniformly bounded, and the Assumption A2 that the variance of the ψ0-
centered loss function L(O,ψ)−L(O,ψ0) can be bounded by its expectation
uniformly in ψ, van der Laan et al. (2006) (Theorem 3.1) establish the fol-
lowing finite sample inequality.

Theorem 2. Let { ˆ
k = Ψ̂k(Pn), k = 1, ..., K(n)} be a given set of K(n)

estimators of the parameter value ψ0 = arg minψ∈Ψ

∫
L(o, ψ)dP0(o). Let

d0(ψ, ψ0) ≡ EP0{L(O,ψ) − L(O,ψ0)} denote the risk difference between a
candidate estimator ψ and the parameter ψ0. Suppose that Ψ is a param-
eter space so that Ψ̂k(Pn) ∈ Ψ for all k, with probability 1. Let K̂(Pn) ≡
arg mink EBn

∫
L(o, Ψ̂k(P

0
n,Bn

))dP 1
n,Bn

(o) be the cross-validation selector, and

let K̃(Pn) ≡ arg mink EBn

∫
L(o, Ψ̂k(P

0
n,Bn

))dP0(o) be the comparable oracle
selector. Let p be the proportion of observations in the validation sample.
Then, under assumptions A1 and A2, one has the following finite sample
inequality for any λ > 0 (where C(λ) is a constant, defined in van der Laan
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et al. (2006)):

Ed0(Ψ̂K̂(Pn)(P
0
n,Bn

), ψ0) ≤

(1 + 2λ)Ed0(Ψ̂K̃(Pn)(P
0
n,Bn

), ψ0) + 2C(λ)
1 + log(K(n))

np
.
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