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ADAPTIVE  
BOOSTING 

 
 
 
 
 
 
 
 
 
 
AdaBoost, short for Adaptive Boosting, stands as a cornerstone in the realm of 
machine learning, offering a potent ensemble learning approach for classification 
or regression tasks. 
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Weak Learners: 
• Simple decision trees with a single split.  

• These weak learners, while individually less capable, are 
sequentially combined to form a robust classifier.  

• Focuses on refining its model iteratively, with each new 
weak learner addressing the mistakes of its predecessors. 

 
 

Weights and Error: 
• Training by assigning weights to instances in the training 

set.  

• Weights evolve with each iteration, emphasizing the 
instances that were previously misclassified.  

• Allows the algorithm to learn and adapt, gradually 
improving its performance. 

 
 

Combining Classifiers: 
• Combines the predictions of weak learners judiciously.  

• Weighted sum of these learners' predictions, where the 
weight assigned to each learner reflects its accuracy.  

• Results in a powerful, accurate model that outperforms 
individual weak learners. 

 
 

Boosting: 
• Adheres to the boosting strategy, a technique that 

accentuates misclassified instances.  
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• Ensures a targeted and adaptive learning process, 
enhancing the overall performance of the ensemble. 

 
 
 

Training Process and Iterative Refinement: 
• Each weak learner refines the model's understanding of 

the data.  

• Adjustments to the weights of misclassified instances  

• This helps algorithm toward better generalization and 
robustness. 

 
 

Predictions and Model Robustness: 
• Aggregating the individual predictions of weak learners.  

• Less prone to overfitting. 

• Boasts robustness and adaptability, making it a go-to 
choice for diverse machine learning applications. 

 
 

Limitations: 
• Sensitivity to noisy data and outliers. 

• Careful evaluation of data quality is crucial for optimal 
performance. 

• Strength lies in its adaptability, but this very feature can 
become a limitation if not handled judiciously. 
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Conclusion: 
 
In conclusion, AdaBoost stands tall as a versatile and powerful 
algorithm, leveraging the synergy of weak learners to create 
robust classification models. Its adaptive nature and remarkable 
performance make it an asset in the machine learning arsenal, 
providing a blueprint for tackling complex real-world challenges 
with finesse. 
 

Example: 
 
Initialization: 

 
We start with equal weights for all instances: w1 = w2 = w3 = 
w4 = 0.25. 
 
Weak Learner (Decision Stump): 
 
We use a decision stump as a weak learner.  
 
Let's say the first decision stump (weak learner) focuses on the 
X1 feature and splits the data based on X1 > 2.5. 
 
The errors are calculated: Instance 1 is misclassified, so its 
weight increases (w1 = 0.5), while the weights of correctly 
classified instances decrease (w2 = w3 = w4 = 0.167). 
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Calculate the Weak Learner's Weight: 

 
The weight of the weak learner (alpha) is calculated based on 
its error rate. In this case, let's assume the error rate is 0.25. 
Alpha (α) = 0.5 * log((1 - 0.25) / 0.25) ≈ 0.6496. 

 
Update Instance Weights: 

 
We update the weights of instances based on whether they 
were correctly or incorrectly classified by the weak learner. 
 
w1 = w1 * exp(-α) ≈ 0.5 * exp(-0.6496) ≈ 0.2416 
w2 = w2 * exp(α) ≈ 0.167 * exp(0.6496) ≈ 0.4025 
w3 = w3 * exp(α) ≈ 0.167 * exp(0.6496) ≈ 0.4025 
w4 = w4 * exp(α) ≈ 0.167 * exp(0.6496) ≈ 0.4025 

 
Iterative Process: 

 
Repeat steps 2-4 with a new weak learner. The algorithm 
focuses on instances that were previously misclassified, 
adjusting weights and building a strong ensemble. 
 
Final Prediction: 
The final prediction is made by combining the weak learners' 
predictions, each weighted by its α value. 
This iterative process continues until a predetermined number 
of weak learners are trained. The final ensemble combines their 
outputs to make robust predictions. 
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Adaptive boosting from Scikit Learn: 
Parameters: 
 

• base_estimator (default=DecisionTreeClassifier):  
o The base estimator, or weak learner, used for the 

ensemble. 
o  It should be a classifier, and its default is a decision 

tree. 

• n_estimators:  
o The maximum number of weak learners (estimators) 

to train.  
o This controls the number of iterations or rounds in 

the boosting process. 

• learning_rate (default=1.0):  
o The contribution of each weak learner to the final 

combination.  
o A smaller value requires more weak learners but can 

improve generalization. 

• algorithm (default='SAMME.R'):  
o The boosting algorithm to use. 'SAMME.R' is for real 

boosting, while 'SAMME' is for discrete boosting. 

• random_state:  
o Controls the random seed for reproducibility. 



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.datasets import load_iris
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
import warnings

warnings.filterwarnings("ignore", category=FutureWarning)

# Load the Iris dataset
iris = load_iris()
X, y = iris.data, iris.target

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Create a base estimator (Decision Tree Classifier)
base_estimator = DecisionTreeClassifier(max_depth=10)  # Use a more complex base estimator

# Create AdaBoostClassifier
adaboost_clf = AdaBoostClassifier(base_estimator=base_estimator, n_estimators=50, learning_rate=1.0, random_state=42)

# Cross-validation
cv_scores = cross_val_score(adaboost_clf, X, y, cv=5)
print(f"Cross-Validation Scores: {cv_scores}")
print(f"Mean Accuracy: {cv_scores.mean()}")

# # Train the AdaBoostClassifier on the full training set
# adaboost_clf.fit(X_train, y_train)

# # Evaluate on the test set
# test_accuracy = adaboost_clf.score(X_test, y_test)
# print(f"Test Accuracy: {test_accuracy}")

output Cross-Validation Scores: [0.96666667 0.96666667 0.9        0.93333333 1.        ]
Mean Accuracy: 0.9533333333333334
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