
Statistical Machine Learning
Yiqiao YIN

Department of Statistics
Columbia University

Abstract
This document notes all materials discussed in Statistical Machine Learning, a course offered in

Department of Statistics by Columbia University. We combine graduate level machine learning topics
from Elements of Statistical Learning and R coding exercises from Introduction to Statistical Learning.
This document also implements neural network and convolutional neural network from Stanford website.
Most significantly, this document provides theoretical framework and evidence that better testing set
accuracy can be achieved with the implementation of an interaction-based variable selection technique,
I-score, The document sends a message to my audience that a better generation of statistical learning can
be studied, a more accurate prediction methdology can be discovered, and a better future can be seen.

1

Contents
1 STATISTICAL LEARNING 9

1.1 Unsupervised and Supervised Learning . 9
1.2 Parametric and Non-parametric . 9
1.3 Loss Function . 9

1.3.1 Bias Variance Decomposition . 10

2 CLASSIFICATION PROBLEM 11
2.1 Bayesian Model . 11

2.1.1 Maximum Likelihood Estimation . 11
2.1.2 Bayes’ Theorem . 13
2.1.3 MAP Estimation . 13
2.1.4 Symmetric and Orthogonal Matrices . 14

2.2 EM Algorithm . 14
2.2.1 Jensen’s Inequality . 14
2.2.2 Will it Converge? . 16

2.3 Logistic . 17
2.4 Linear Discriminant Analysis (LDA) . 18

3 UNSUPERVISED LEARNING 20
3.1 Principal Component Analysis (PCA) . 20

3.1.1 Mathematis of Principal Components . 21
3.1.2 Minimizing Projection Residuals . 21
3.1.3 Maximizing Variance . 22

3.2 Clustering Methods . 22
3.2.1 K-Means Clustering . 23
3.2.2 Hierarchical Clustering . 24

4 GENERALIZED LINEAR MODEL 25
4.1 Exponential Family . 25
4.2 Constructing GLMs . 26

4.2.1 Ordinary Least Squarers . 26
4.2.2 Logistic Regression . 26
4.2.3 Softmax Regression . 27

5 RESAMPLING AND MODEL SELECTION 30
5.1 Cross Validation . 30
5.2 K-Fold Cross Validation . 30

6 NON-LINEAR REGRESSION 32
6.1 Polynomial . 32
6.2 Step Function . 32
6.3 Basis Functions . 32
6.4 Regression Splines . 33

6.4.1 Piecewise Polynomials . 33
6.4.2 Constraints and Splines . 33

7 TREE CLASSIFIERS 34
7.1 Regression Tree . 34
7.2 Pruning . 35

7.2.1 Classification Trees . 35
7.2.2 Advantages and Disadvantages of Trees . 36

7.3 Bagging . 36
7.3.1 Out-of-bag (OOB) . 37

2

7.4 Random Forests . 37
7.5 Boosting . 37

8 SUPPORT VECTOR MACHINE 39
8.1 Hyperplanes . 39
8.2 Linear Classifier . 39
8.3 Maximum Margin . 39
8.4 Kernels . 41

8.4.1 RBF . 41
8.4.2 Definition: Kernel Function . 41
8.4.3 Mercer’s Theorem . 42

8.5 Support Vectors . 42
8.6 Optimization . 43

8.6.1 Optimization Problems . 43
8.6.2 Gradient Descent . 43
8.6.3 Newton’s Method . 44
8.6.4 Karush-Kuhn-Tucker . 44

9 NEURO-NETWORK 45
9.1 A Neuron . 45
9.2 Neuron as Linear Classifier . 45
9.3 Activation Functions . 45

9.3.1 Sigmoid . 46
9.3.2 Tanh . 46
9.3.3 ReLU . 46
9.3.4 Leaky ReLU . 47
9.3.5 Maxout . 47

9.4 NN Architecture: a Layer-wise Organization . 47
9.4.1 Naming Conventions . 47
9.4.2 Output Layer . 48
9.4.3 Sizing NN . 48

10 CONVOLUTIONAL NEURAL NETWORKS (CNN) 49
10.1 Architecture Overview . 49
10.2 Layers Used to Build CNN . 49

10.2.1 Input . 50
10.2.2 Conv . 50
10.2.3 Relu . 50
10.2.4 Pool . 50
10.2.5 FC . 50

10.3 Convolutional Layer . 50
10.3.1 Overview and intuition without brain stuff . 51
10.3.2 The brain view . 51
10.3.3 Local Connectivity . 51
10.3.4 Spatial arrangement . 51
10.3.5 Constraints on strides . 52
10.3.6 Parameter Sharing . 52

10.4 Implementation as Matrix Multiplication . 53

11 DIMENSION REDUCTION 54
11.1 Bias-Variance Trade-off . 54
11.2 PCR . 54

11.2.1 The Principal Components Regression Approach . 54
11.3 Step Variable Selection . 55
11.4 James-Stein . 55

3

11.5 Ridge . 55
11.5.1 Motivation . 55
11.5.2 Ridge Approach . 56
11.5.3 Proofs . 57
11.5.4 Bayesian Framework . 58

11.6 Lasso . 58
11.6.1 A Leading Example . 58
11.6.2 Lasso Estimator . 59
11.6.3 Compute Lasso Solution . 60

11.7 Influence Measure: I Score . 61
11.7.1 Background and Motivation . 61
11.7.2 Theoretical Framework . 61

12 Exercise 1 64
12.1 K-Means . 71
12.2 Linear Regression . 72
12.3 Logistic Regression . 77
12.4 LDA . 78
12.5 PCA . 79
12.6 Application: Stock Data; Logistic, LDA, QDA, and KNN . 83
12.7 Application: Insurance Data . 90

13 Exercise 2 93
13.1 Boosting . 93

13.1.1 Intuition . 93
13.1.2 Model . 93

13.2 Dimension Reduction Techniques . 95
13.2.1 PCR . 96
13.2.2 Step-wise Regression . 101
13.2.3 Ridge vs. Lasso . 102

14 Exercise 3 108
14.1 Support Vector Classifier . 108
14.2 Support Vector Machine . 114
14.3 ROC Curve . 118
14.4 SVM with Multiple Classes . 119
14.5 Application to Gene Expression Data . 121

15 Exercise 4 123
15.1 Cubic Spline . 123
15.2 Sampling for Monte Carlo . 128

16 Exercise 5 133
16.1 Fitting Classification Trees . 133
16.2 Fitting Regression Trees . 138
16.3 Bagging and Random Forests . 142
16.4 Boosting . 145

17 Exercise 6 148
17.1 Neural Network . 148
17.2 Convolutional Neural Network . 156

18 Homework 1 162
18.1 Problem 1 . 162
18.2 Problem 2 . 163

4

18.2.1 1. Download Data . 163
18.2.2 2. PCA on Prices (cor = “”) . 164
18.2.3 3. PCA on Prices (cor = TRUE) . 167
18.2.4 4. Return Analysis . 171

19 Homework 2 176
19.1 Problem 1 . 176
19.2 Problem 2 . 179

19.2.1 (a) Cross-Validation (Linear) . 181
19.2.2 (b) Cross-Validation (Non-Linear) . 182

20 Homework 3 184
20.1 Problem 1 . 184
20.2 Problem 2 . 185

5

This document is dedicated to Professor Linxi Liu and Professor Shaw-Hwa Lo.

6

Artificial intelligence is a logical extension of human minds using machine power to execute human will.

— Yiqiao Yin

7

Preface

After a year as visting scholar at Columbia, I finally build up the foundation as well as my courage to take
statistical machine learning. As the most important course to enter the realm of machine learning, it is
essential to learn the theoretical framework behind approaches previous scholars have attempted.

The instructor of this course, Professor Linxi Liu, happened to be working with the same professor in
Department of Statistics I have been working with. Through this common connection, a lot of interesting
questions and sparks can be triggered deep into the field of machine learning and eventually the field can be
pushed forward by my dedication.

In my point of view, artificial intelligence is a logical extension of our minds using machine power to execute
human will. Serving as a foundation platform for artificial intelligence, the materials of this class too
valuable to be ignored so I have decided to document everything I can about this topic from this class.

This document is structured in the following way. We start with basic topics such as parametric functions,
loss functions, and bayesian models. Next, we move on to discuss PCA, LDA, quadratic fitting models for
higher dimension techniques. This document will lands on Neural Network and Convolutional Neural
Network, the most advanced machine learning methodology in the market right now.

I will then introduce I-score and Backward-dropping algorithm (developed by Professor Shaw-Hwa Lo in the
Department of Statistics at Columbia University) as a variable selection methodology on sample datasets.
This serves as a foundation document laying ground work of attempted research in the realm of machine
learning. I will write a follow-up document with results that I-score is able to improve final testing set
accuracy by identifying the variables that impact the responses the most.

To make this document practical for other users, the end of the document also introduces a various of
techniques and I personally provided R code based on my experience or learning from other materials.

8

1 STATISTICAL LEARNING

1.1 Unsupervised and Supervised Learning

In unsupervised learning, we start with a matrix. We have quantitative measures such as weight, height,
number of appearances, etc.. Our goal is to find 1) meaningful relationships between variables or units
correlation analysis, 2) find low-dimensional representations of the data which make it easy to visualize the
variables such as using PCA, ICA, multidimensional scaling, locally linear embeddings, etc., and/or 3) find
meaningful clustering. Unsupervised learning is also known in statistics as exploratory data analysis.

In supervised learning, there are input variables, and output variables. If X is the vector of inputs for a
particular sample. The output variable is variable is modeled by

Y = f(X) + ε︸︷︷︸
Random Error

The goal is simply to learn the function f , usinga set of training samples. The motivation is intuitive. We
want to generate prediction. Prediction is useful when the input variable is readily available, but the output
variable is not. We can also draw inferences. A model for f can help us understand the structure of teh data
— which variables influence the output, and which does not? What is the relationship between between each
variable and the output?

1.2 Parametric and Non-parametric

There are two kinds of supervised learning method: parametric methods and non-parametric methods. We
assume that f takes a specific form. A linear form

f(X) = X1β1 + · · ·+Xpβp while Y ∼ N (
p∑
j=1

βjxj , σ
2); ε ∼ N (0, σ2)

with parameters β1, ..., βp. Using the training data, we try to fit the parameters. For non-pamaetric method,
we do not make any assumptions on the form of f , but we restrict how “wiggle” or “rough” the function can
be.

1.3 Loss Function

The loss function L(Y, f̂(X)) measures the errors between the observed value Y and the predicted value
f̂(X). In a regression problem, two most common loss functions are

L(Y, f̂(X)) =
{

(Y − f̂(X))2, squared error
|Y − f̂(X), absolute error

The prediction error is given based on the following. Given training data: (x1, y1), (x2, y2), ..., (xn, yn), the
predicted function is f̂ . The goal in supervised learning is to minimzie the expected prediction error. Under
squared-error loss, this is the Mean Squared Error.

MSE(f̂) = E(y0 − f̂(x0))2.

Unfortunately, this quantity cannot be compputed, because we do not know the joint distribution of (X,Y).
We can compute a sample average using the training data; this is known as the training MSE:

9

MSEtraining(f̂) = 1
n

n∑
i=1

(yi − f̂(xi))2.

The main challenge of statstical learning is that a low training MSE does not imply a low MSE. If we have
test data {(x′i, y′i); i = 1, ...,m} which were not used to fit the model, a better measure of quality for f̂ is the
test MSE:

MSEtest(f̂) = 1
m

m∑
i=1

(y′i − f̂(x′i))2.

1.3.1 Bias Variance Decomposition

Let x0 be a fixed test point, y0 = f(x0) + ε0, and f̂ be estimated from n training samples (x1, y1), ..., (xn, yn).
Let E denote the expectation over y0 and the training outputs (y1, ..., yn). Then, the MSE at x0 can be
decomposed

MSE(x0) = E(y0 − f̂(x0))2 = V ar(f̂(x0)) + [Bias(f̂(x0))]2 + V ar(ε)0).

Observe the last term, V ar(ε)0 is irreducible error. The variance of the estimates of Y is
E[f̂(x0)−E(f̂(x0))]2. This measures how much the estimate of f̂ at x0 changes when we sample new trainig
data.

The above equation tells us that in order to minimize the expected test error, we need to select a statistical
learning method that simultaneously achieves low variance and low bias. Note that the variance is inherently
a nonnegative quantity, and squared bias is also nonnegative. Hence, we see that the expected test MSE can
never lie below Var(ε), the irreducible error from the the formula.

In details, variance refers to the amount by which f̂ would change if we estimated it using a different training
data set. Since the training data are used to fit the statistical learning method, different training data sets
will result in a different f̂ . But ideally the estimate for f should not vary too much between training sets.
However, if a method has high variance then small changes in the training data can result in large changes in
f̂ . On the other hand, bias refers to the error that is introduced by approximating a real-life problem, which
may be complicated.

10

2 CLASSIFICATION PROBLEM

In classification setting, the output takes values in a discrete set. For example, if we are predicting the brand
of a car based on a number of variables, the function f takes values in the set such as {Ford,Toyota, ...}. In
this case, The model Y = f(X) + ε becomes insufficient, as f is not necessarily real-valued. We will use
slightly different notation. P (X,Y), the joint distribution of (X,Y), P (Y |X), the conditional distribution of
X given Y , and ŷi, the prediction for xi. In this case a common 0-1 loss would be

E(1(y0 6= ŷ0))

2.1 Bayesian Model

2.1.1 Maximum Likelihood Estimation

We have the following setup. Given data: x1, ..., xn, parametric model P = {p(x|θ)|θ ∈ T }, the objective is
to find the distribution in P which best explains the data. That means we have to choose a “best” parameter
value θ̂.

Maximum Likelihood assumes that the data is best explained by the distribution in P under which it has the
highest probability (or the highest density value). Hence, the maximum likelihood estimator is defined
as

θ̂ML := arg max
θ∈T

p(x1, ..., xn|θ)

the parameter which maximizes the joint density of the data.

Here we need to make a crucial assumption, i.e., the iid. assumption. The standard assumption of ML
methods is that the data is independent and identically distributed, i.i.d., that is, generated by independently
sampling repeatedly from the same distribution P . If the density of P is p(x|θ), that means the joint density
decomposes as

(x1, ..., xn) =
n∏
i=1

p(xi|θ)

The analytic criterion for a maximum likelihood estimator (under the i.i.d. assumption) is

5θ
(n∏
i=1

p(xi|θ)
)

= 0

We use the “logarithm trick” to avoid a huge product rule computation. That is,

θ̂ML = arg max
θ

∏n
i=1 p(xi|θ)

= arg max
θ

log
(∏n

i=1 p(xi|θ)
)

= arg max
θ

∑n
i=1 log p(xi|θ)

Analytic maximality criterion would be

0 =
n∑
i=1
5θ log p(xi|θ) =

n∑
i=1

5θp(xi|θ)
p(xi|θ)

11

and we do not always have a solution depending on what model we use.

2.1.1.1 Ex: Gaussian Mean MLE

Consider Gaussian density in one dimension

g(x;µ, σ) := 1√
2πσ

exp
(
− (x− µ)2

2σ2

)
The quotient x−µ

σ measures deviation of x from its expected value in units of σ (i.e. σ defines the length
scale). The d dimensions Gaussian density, we have the quadratic function

− (x− µ)2

2σ2 = −1
2(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

g(x;µ,Σ) := 1√
(2π)d det(Σ)

exp
(
− 1

2 < (x− µ),Σ−1(x− µ) >
)

For multivariate Gaussians, the model P is the set of all Gaussian densities on Rd with fixed covariance
matrix Σ,

P = {g(·|µ,Σ)|µ ∈ Rd}

where g is the Gaussian density function. The parameter space is T = Rd. For the MLE, we solve the
following:

Solve
∑n
i=15µ log g(xi|µ,Σ) = 0

Setup: 0 =
∑n
i=15µ log 1√

(2π)d|Σ|
exp

(
− 1

2 < (xi − µ),Σ−1(xi − µ) >
)

=
∑n
i=15µ log

(
1√

(2π)d|Σ|
exp

)
+ log

((
− 1

2 < (xi − µ),Σ−1(xi − µ) >
))

=
∑n
i=15µ

(
− 1

2 < (xi − µ),Σ−1(xi − µ) >
)

= −
∑n
i=1 Σ−1(xi − µ)

Solve for
0 =

∑n
i=1(xi − µ)

⇒ µ = 1
n

∑n
i=1 xi

We can conclude that the maximum likelihood estimator of the Gaussian expectation parameter for fixed
covariance is

µ̂ML := 1
n

n∑
i=1

xi

12

2.1.2 Bayes’ Theorem

The defining assumption of Bayesian statistics is that the distribution Pθ which models the data is a random
quantity and itself has a distribution A. The generative model for data X1, X2, ... is

Pθ ∼ Q

X1, X2, ...
i.i.d.∼ Pθ

The rational behind the approach is that 1) in any statistical approach (Bayesian or frequentist), the
distribution Pθ is unknown, 2) Bayesian statistics argues that any form of uncertainty should be expressed by
probability distributions. 3) We can think of the randomness in Q as a model of the statistician’s lack of
knowledge regarding Pθ. The distribution Q is called the priori distribution of the prior. We use q to denote
its density if it exists. Our objective is to determine the conditional probability of P given observed data

Pr(θ|x1, ..., xn).

The distribution is called the posteriori distribution or posterior. Given data, X1, ..., Xn, we can compute the
posterior by

Pr(θ|x1, ..., xn) =
(
∏n
i=1 p(xi|θ))q(θ)
p(x1, ..., xn) =

(
∏n
i=1 p(xi|θ))q(θ)∫

(
∏n
i=1 p(xi|θ))q(θ)

The individual terms have names

posterior = likelihood× prior
evidence

2.1.3 MAP Estimation

Suppose
∏

(θ|x1,n) is the posterior of a Bayesian model. The estimator

θ̂MAP = arg max
θ

∏
(θ|x1,n)

is called the maximum a posteriori (or MAP) estimator for θ.

For linear mapping, we define the following. A matrix X ∈ Rn×m defines a lienar mapping fx : Rm → Rn.
The image of a mapping f is the set of all possible function values, here

image(fX) := {y ∈ Rn|Xz = y for some z ∈ Rm}

The image of a linear mapping Rm → Rn is a linear subspace of Rn. The columns of X form a basis of the
image space:

image(X̄) = span{Xcol
1 , ..., Xcol

m }

This is one of the most useful things for matrices and we can interpret as a linear combination of columsn
form the target image.

13

2.1.4 Symmetric and Orthogonal Matrices

Given the cocnepts of linear mapping, the theorems from real analysis follow as well. We can introduce
column ranks, invertibility, one-one, and etc.. For orthogonal matrices, we have the following definition: A
matrix O ∈ Rm×m is called orthogonal is O−1 = OT . Orthogonal matrices describe two types of operations:
1) rotations of the coordinate system, and 2) permutations of the coordinate axes. Symmetric matrices are
defined as the follows. A matrix A ∈ Rm×m is called symmetric if A = AT . Note that symmetric and
orthogonal matrices are very different objects.

Based on the definitions above, we raise the concept of orthonormal basis, ONB. A basis {v1, ..., vmn} of Rm
is called an orthonormal basis if

< vi, vj >=
{

1 i = j
0 i 6= j

In other words, the vi are pairwise othogonal and each of them with length 1. A matrix is orthogonal
precisely if its rows from an ONB. Any two ONBs can be transformed into each other by an orthogonal
matrix.

To represent a basis, suppose E = {e1, ..., ed} is a basis of a vector space. Then a vector x is represented as
x =

∑d
j=1[xj]Ee(j) while [xj]E ∈ R are the coordinates of x w.r.t. E . We can have other bases as well.

Consider B = {b1, ..., bd} is another basis. Then x can be represented alternative as x =
∑d
j=1[xj]Bb(j).

Change-of-basis matrix: The matrix M :=
(

[e(1)]B, ..., [e(d)]B
)
. If both E and B are ONBs, M is orthogonal.

The matrix representing a linear mapping A : Rd → Rd in the basis E is computed as

[A]E :=
(

[A(e(1))E , ..., [A(e(d))E
)

The matrix representing a linear mapping also changes when we change basis [A]B = M [A]EM−1. Applied to
a vector x, this means

[A]B[x]B = M︸︷︷︸
Transform x back to B

Apply A in representation E︷︸︸︷
[A]E M−1︸ ︷︷ ︸

transform x back to B

[x]B

2.2 EM Algorithm

In statistics, an expectation-maximization (EM) algorithm is an iterative method to find maximum
likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model
depends on unobserved latent variables. The EM iteration alternates between performing an expectation (E)
step, which creates a function for the expectation of the log-likelihood evaluated using the current estimate
for the parameters, and a maximization (M) step, which computes parameters maximizing the expected
log-likelihood found on the E step. These parameter-estimates are then used to determine the distribution of
the latent variables in the next E step.

2.2.1 Jensen’s Inequality

Let f be a function whose domain is the set of real numbers. Recall that f is a convex function if f ′′(x) ≥ 0
for all x ∈ R. In ths case of f taking vector-valued inputs, this is generalized to the condition that its hessian
H is positive semi-definite (H ≥ 0). If f ′′(x) > 0 for all x, then we say f is strictly convex (in the

14

vector-valued case, the corresponding statement is that H must be positive definite, written H > 0).
Hensen’s inequality can then be stated as follows:

Theorem. Let f be a convex function, and let X be a random variable. Then we have

E[f(X)] ≥ f(E(X))

Moreover, if f is strictly convex, then E[f(X)] = f(E(X)) holds true if and only if X = E[X] with
probability 1 (i.e., if X is a constant). ### The EM Algorithm

Suppose we have an estimation problem in which we have a training set {x(1), ..., x(m)} consisting of m
independent examples. We wish to fit the parameters of a model p(x, z) to the data, where the likelihood is
given by

l(θ) =
∑m
i=1 log p(x; θ)

=
∑m
i=1 log

∑
i p(x, z; θ).

But, explicitly finding the MLE of the parameters θ may be hard. In this case, the z(i)’s are the latent
random variables; and it is often the case that if the z(i)’s were observed, then maximum likelihood
estimation would be easy.

In such a setting, the EM algorithm gives an efficient method for maximum likelihood estimation.
Maximizing l(θ) explicitly might be difficult, and our strategy will be to instead repeatedly construct a
lower-bound on l (E-step), and then optimize that lower-bound (M-step).

For each i, let Qi be some distribution over the z’s (
∑
z Qi(z) = 1, Qi(z) ≥ 0). Consider the following

∑
i log p(x(i); θ) =

∑
i log

∑
z(i) p(x(i), z(i); θ)

=
∑
i log

∑
z(i) Qi(z(i))p(x

(i),z(i);θ)
Qi(z(i))

≥
∑
i

∑
z(i) Qi(z(i)) log p(x(i),z(i);θ)

Qi(z(i))

The last step of this derivation used Jensen’s inequality. Specifically, f(x) = log x is a concave function, since
f ′′(x) = −1/x2 < 0 over its domain x ∈ R+. Moreover, the term

∑
z(i)

Qi(z(i))
[
p(x(i), z(i); θ)
Qi(z(i))

]

in the summation is just an expectation of the quantity [p(x(i)), z(i); θ)/Qi(z(i))] with respect to z(i) drawn
according to the distribution given by Qi. By Jensen’s inequality, we have

f

(
Ez(i)∼Qi

[
p(x(i), z(i); θ)
Qi(z(i))

])
≥ Ez(i)∼Qif

[(
p(x(i), z(i); θ)
Qi(z(i))

)]
where the z(i) ∼ Qi subscripts above indicate that the expectations are with respect to z(i) drawn from Qi.

We need to make the lower-bound tight at the value of θ. To make this happen, we need for the step
involving Jensen’s inequality in our derivation above to hold with equality. We require that

p(x(i), z(I); θ)
Qi(z(i))

= c

for some constant c that does not depend on z(i). This is easily accomplished by shooing

15

Qi(z(i)) ∝ p(x(i), z(i); θ)

Actually, since we know that
∑
z Qi(z(i)) = 1, this further tells us that

Qi(z(i)) = p(x(i),z(i);θ)∑
z
p(x(i),z;θ)

= p(x(i),z(i);θ)
p(x(i);θ)

= p(z(i)|x(i); θ)

Thus, we simply set the Qi’s to be the posterior distribution of the z(i)’s given x(i) and setting of the
parameters θ.

Now we want to maximize the lower-bound on loglikelihood l. This is the E-step. In the M-step of the
algorithm, we maximize our formula

∑
i log p(x(i); θ) ≥

∑
i

∑
z(i) Qi(z(i)) log p(x(i),z(i);θ)

Qi(z(i)) with respect to the
parameters to obtain a new setting of the θ’s. Repeatedly carry out these two steps gives us the EM
algorithm, which is the following

Repeat until convergence

(E-Step) For each i, set

Qi(z(i)) := p(z(i)|x(i); θ).

(M-Step) Set

θ := arg max
θ

∑
i

∑
z(i)

Qi(z(i)) log p(x
(i), z(i); θ)
Qi(z(i))

.

2.2.2 Will it Converge?

Suppose θ(i) and θ(i+1) are the parameters from two successive iterations of EM. We will now prove that
l(θ(i)) ≤ l(θ(i+1)), which shows EM always monotonically improves the log-likelihood. The key to showing
this result lies in our choice of the Qi’s. Specifically, on the iteration of EM in which the parameters had
started out as θ(i), we would have chosen Q(i)

i (z(i)) := p(z(i)|x(i); θ(t)). Applying Jensen’s inequality to
formula

∑
i log p(x(i); θ) ≥

∑
i

∑
z(i) Qi(z(i)) log p(x(i),z(i);θ)

Qi(z(i)) , holds with equality, and hence

l(θ(i)) =
∑
i

∑
z(i)

Q
(i)
i (z(i)) log p(x

(i), z(i); θ(i))
Q

(i)
i (z(i))

.

The parameters θ(t+1) are then obtained by maximizing the right hand side of the equation above. Thus,

l(θ(t+1)) ≥
∑
i

∑
z(i)Q

(i)
i

Q
(i)
i (z(i)) log p(x(i),z(i);θ(t+1))

Q
(t)
i

(z(i))

≥
∑
i

∑
z(i) Q

(i)
i (z(i)) log p(x(i),z(i);θ(i))

Q
(i)
i

(z(i))
= l(θ(i))

The first inequality comes from the fact that

l(θ) ≥
∑
i

∑
z(i)

Qi(z(i)) log p(x
(i), z(i); θ)
Qi(z(i))

16

holds for any values of Qi and θ, and in particular holds for Qi = Q
(i)
i , θ = θ(i+1). To get the second to last

equation in the derivation above, we used the fact that θ(t+1) is chosen explicitly to be

arg max
θ

∑
i

∑
z(i)

Qi(z(i)) log p(x
(i), z(i); θ)
Qi(z(i))

,

and thus this formula evaluated at θ(t+1) must be equal to or larger than the same formula evaluted at θ(i).
Finally, we get to the last equation in the derivation and follows from q

(i)
i having been chosen to make

Jensen’s inequality hold with equality at θ(i).

2.3 Logistic

To model the relationship between p(X) = Pr(Y = 1|X) and X, logistic function is a good candidate. In
logistic regression, the function takes the following form

p(X) = expβ0 + β1X

1 + expβ0 + β1X

To fit this model, we use a method called maximum likelihood. We rewrite p(X) into

p(X)
1− p(X) = expβ0 + β1X

Taking logarithm on both sides, we arrive

log
(

p(X)
1− p(X)

)
= β0 + β1X

The left-hand side, which is called logit, is the response we want estimate. Statistical inference is needed to
compute the estimated regression coefficients. The coefficients β0 and β1 in the definition are unknown, and
must be estimated based on the available training data. A general method is to maximum likelihood since it
has better statistical properties. The intuition behind using maximum likelihood to fit a logistic regression
model is as follows: we seek estimates for β0 and β1 such that the predicted probability p̂(xi) of default for
each individual corresponds as closely as possible to the individual’s observed default status. This intuition
can be formalized using a likelihood function:

l(β0, β1) =
∏
i:yi=1

p(xi)
∏

i′:yi′=0
(1− p(xi′))

The estimates β̂0 and β̂1 are chosen to maximize this likelihood function. Predictions can be made once the
coefficients have been estimated,

p̂(X) = exp(β̂0 + β̂1X)
1 + exp(β̂0 + β̂1X)

.

For multiple logistic regression, the model takes the following generalized form

log
(

p(X)
1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp,

where X = (X1, ..., Xp) are p predictors. The left-hand side is called the log-odds or logit.

17

2.4 Linear Discriminant Analysis (LDA)

For the following situations, one might want to consider the validty of logistic regression and pursue linear
discriminant analysis. When the classes are well-separated, the parameter estiamtes for the logistic regression
model are surprisingly unstable. Linear discriminant analysis does not suffer from this problem. If n is small
and the distribution of the predictors X is approximately normal in each of the classes, the linear
discriminant model is again more stable than the logistic regression model.

Suppose thereis p = 1 one predictor and we would like to estimate fk(x) to estimate pk(x). Suppose we
assume fk(x) is normal or Gaussian. The normal density takes the form

fk(x) = 1√
2πσk

exp
(
− 1

2σ2
k

(x− µk)2
)

where µk and σ2
k are the mean and variance parameters for the kth class. Plugging the normal density

formula into Bayes’ Theorem, we get

pk(x) =
πk

1√
2πσ exp(− 1

2σ2 (x− µk)2)∑K
l=1 πl

1√
2πσ exp(− 1

2σ2 (x− µl)2)

while πk denotes the prior probability that an observation belongs to the kth class. Taking the log of and
rearranging the terms, it is not hard to show that

δk(x) = x · µk
σ2 −

µk
2σ2 + log(πk)

is the largest. For example, consider K = 2 and π1 = π2. The Bayes classifier assigns an observation to class
1 if 2x(µ1 − µ2) > µ2

1 − µ2
2, and to class 2 otherwise. In this case, we have Bayes’ decision boundary

x = µ2
1 − µ2

2
2(µ1 − µ2) = µ1 + µ2

2 .

In practice, we still need to estimate the parameters µ1, ..., µK , π1, ..., πK and σ2 even though we are quite
certain that our observation is drawn from a Gaussian distribution. The linear discriminant analysis (LDA)
method approximates the Bayes classifier by using estsiamtes for πk, µk, and σ2. In particular, the estiamtes
are

µ̂k = 1
nk

∑
i:yi=k

xi

σ̂2 = 1
n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2

where n is the total number of training observations, and nk is the number of training observations in the
kth class while σ̂2 can be seen as a weighted average of the sample variances for each of the K classes.

LDA estimates πk using the proportion of the training observations that belong to the kth class. In other
words,

π̂k = nk/n.

The LDA classifiers use the above estiamtes and assign an observation X = x to the class for which

18

δ̂k(x) = x · µ̂k
σ̂2
− µ̂2

k

2σ̂2 + log(π̂k)

is the largest. The word linear in the classifier’s name stems from the fact the discriminant functions δ̂k(x)
are linear functions of x.

19

3 UNSUPERVISED LEARNING

3.1 Principal Component Analysis (PCA)

As the most popular unsupervised procedure, invented by Karl Pearson (1901), and developed by Harold
Hotelling (1993), principal component analysis provides a way to visualize high dimensional data,
summarizing the most important information. Let X be a data matrix with n samplesl, and p variables.
From each variable, we subtract the mean of the column; i.e. we center the variables.

Principal Component Analysis assumes the following. The directions along which uncertainty in data is
maximal are most interesting. The uncertainty is measured by variance. The algorithm takes the following
steps. Consider a data set with D dimensions:

1) Compute empirical covariance matrix of the data;
2) Compute its eigen-values λ1, ..., λD, and eigen-vectors ξ1, ..., ξD;
3) Choose the d largest eigen-values, say, λj1, ..., λjd;
4) Define subspace as V := span{ξj1, ..., ξjd};
5) Project data onto V : for each xi, compute xvi :=

∑d
j=1 < xi, ξj > ξj .

Several notation here takes the following form. Empirical mean of the data is µ̂n := 1
n

∑
i=1 nxi. Empirical

variance of data (1 dimension) is σ̂2
n := 1

n

∑n
i=1(xi − µ̂n)2. Empirical covariance of data (D dimensions) is

Σ̂n := 1
n

∑n
i=1(xi − µ̂n)(xi − µ̂n)t.

The algorithm aims to project data onto a direction v ∈ RD such that the variance of the projected data is
maximized.

The first principal component of a set of features X1, X2, ..., Xp is the normalized linear combination of the
features

Z1 = φ11X1 + φ21X2 + · · ·+ φp1Xp

that has the largest variance. By normalized, we mean that
∑p
j=1 φ

2
j1 = 1. We refer to the elements

φ11, ..., φp1 as the loadings of the first principal component; together, the loadings make up the principal
component loading vector, φ1 = (φ11φ21 . . . φp1)T . We constrain the loadings so that their sum of squares is
equal to one.

To find the first principal component φ1 = (φ11, ..., φp1), we solve the following optimization

max
φ11,...,φp1

{
1
n

n∑
i=1

(p∑
j=1

φj1xij

)2}
subject to

p∑
j=1

φ2
j1 = 1.

Projection of the ith sample onto φ1 is also known as the score zi1. The variance of the n samples is also
projected onto φ1. To find the second principal component φ2(φ12, ..., φp2), we solve the folowing
optimization

max
φ12,...,φp2

{
1
n

n∑
i=1

(p∑
j=1

φj2xij

)2}
subject to

p∑
j=1

φ2
j2 = 1 and

p∑
j=1

φj1φj2 = 0.

The first and second principal components must be orthogonal, which is equivalent as saying that the scores
(z11, ..., zn1) and (z12, ..., zn2) are uncorrelated. The optimization is fundamental in linear algebra. It is
satisfied by either the singular value decomposition (SVD) or X: X = UΣΦT , where the ith column of Φ is
the ith principal copmonent φi, and the ith column of UΣ is the ith vector of scores (z1i, ..., zni). The
eigendecomposition of XTX: XTX = ΦΣ2ΦT .

20

3.1.1 Mathematis of Principal Components

we start with p-dimensional vectors, and want to summarize them by projecting down into a q-dimensional
subspace. The summary will be the projection of the original vectors on to q directions, the principal
components, which span the subspace. There are several equivalent ways of deriving the principal
components mathematically. The simplest one is by finding the projections which maximize the variance.
The first principal component is the direction in space along which projections have the largest variance. The
second principal component is hte direction which maximizes variance among all directions orthogonal to the
first. The kth component is the variance-maximizing direction orthogonal to the previous k − 1 components.
There are p principal components in all.

Rather than maximizing variance, it might sound more plausible to look for the projection with the smallest
average (mean-squared) distance between the original vectors and their projections on to the principal
components; this turns out to be equivalent to maximizing the variance.

3.1.2 Minimizing Projection Residuals

Consider a p-dimensional vector and we want to proejct them on to a line through the origin. We can specify
the line by a unit vector along it, w, and then the projection of a data vector xi on to the line that is xi · w
which is a scalar. This is the distance of the projection from the origin; the actual coordinate in p-dimensional
space is (xi · w)w. The mean of the projections will be zero, because the mean of the vectors xi is zero:

1
n

n∑
i=1

(xi · w)w =
((

1
n

n∑
i=1

xi

)
· w
)
w

If we try to use our projected or image vectors instead of our original vectors, there will be some error,
because (in general) the images do not coincide or residual of the projection. How big is it?

||xi − (w · xi)w||2 = (xi − (w · xi)w) · (xi − (w · xi)w)
= xi · xi − xi · (w · xi)w
−(w · xi)w · xi + (w · xi)w · (w · xi)w

= ||xi||2 − 2(w · xi)2 + (w · xi)w · w
= xi · xi − (w · xi)2

since w · w = ||w||2 = 1. Add those residuals up across all the vectors:

MSE(x) = 1
n

∑n
i=1 ||xi||2 − (w · xi)2

= 1
n

(∑n
i=1 ||xi||2 −

∑n
i=1(w · xi)2

)
The first summation does not depend on w, so it does not matter for trying to minimize the MSE. To make
the MSE small, we need to make the second sum big, i.e., we want to maximize 1

n

∑n
i=1(w · xi)2, which we

can see is the sample mean of (w · xi)2. The mean of a square is always equal to the square of the mean plus
the variance:

1
n

n∑
i=1

(w · xi)2
(

1
n

n∑
i=1

xi · w
)2

+ Var[w · xi]

21

3.1.3 Maximizing Variance

Let us maximize the variance. Let us do the algebra in matrix form.

σ2
w = 1

n

∑
i(xi · w)2

= 1
n (xw)T (xw)

= 1
nw

TxTxw
= wT xTx

n w
= wTvw

We want to chose a unit vector w so as to maximize σ2
w. To do this, we need to make sure that we look at

unit vectors, we need to constrain the maximization. The constraint is that w · w = 1. The Lagrange
multiplier λ, multiplied into the equation, will give us:

L(w, λ) ≡ σ2
w − λ(wTw− 1)

∂L
∂λ = wTw− 1
∂L
∂w = 2vw− 2λw

Setting the derivatives to zero for the optimal location, we get

wTw = 1

vw = λw

Thus, desired vector w is an eigenvector of the covariance matrix v, and the maximizing vector will be the
one associated with the largest eigenvalue λ.

Observe v is a p× p matrix, thus it will have p different eigenvectors. we know that v is a covariance matrix,
so ti is symmetric and linear algebra tell solve for eigenvectors that must be orthogonal to each other. These
eigenvectors of v are the principal components of the data.

3.2 Clustering Methods

Clustering refers to a very broad set of techniques for finding subgroups, or clusters, in a data set. When we
cluster the observations of a data set, we seek to partition them into distinct groups so that the observations
within each group are quite similar to each other, while observations in different groups are quite different
from each other.

For instance, suppose that we have a set of n observations, each with p features. The n observations could
correspond to tissue samples for patients with breast cancer, and the p features could correspond to
measurements collected for each tissue sample; these could be clinical measurements, such as tumor stage or
grade, or they could be gene expression measurements. We may have a reason to believe that there is some
heterogeneity among the n tissue samples; for instance, perhaps there are a few different unknown subtypes
of breast cancer. Clustering could be used to find these subgroups. This is an unsupervised problem because
we are trying to discover structure — in this case, distinct clusters — on the basis of a data set.

Both clustering and PCA seek to simplify the data via a small number of summaries, but there are some
differences:

• PCA looks to find a low-dimensional representation of the observations that explain a good fraction of the
variance;

• Clustering looks to find homogeneous subgroups among the observations.

22

3.2.1 K-Means Clustering

K-means clustering is a simple and elegant approach for partitioning a data set into K distinct,
non-overlapping clusters. To perform K-means clustering, we must first specify the desired number of
clusters K; then the K-means algorithm will assign each observation to exactly one of the K clusters.

The K-means clustering procedure results from a simple and intuitive mathematical problem. Let C1, ..., CK
denote sets containing the indices of the observations in each cluster. These sets satisfy two properties:

1. C1 ∪ C2 ∪ ... ∪ CK = {1, ..., n}. In other words, each observation belongs to at least one of the K
clusters.

2. Ck ∩Ck′ = ∅ for all k 6= k′. In other words, the clusters are non-overlapping: no observation belongs to
more than one cluster.

If the ith observation is in the kth cluster, then i ∈ Ck. The idea behind K-means clustering is that a good
clustering is one for which the within-cluster variation is as small as possible. The within-cluster variation for
cluster Ck is is a measure W (Ck) of the amount by which the observations within a cluster differ from each
other. Hence we want to solve the problem

min
C1,...,CK

{ K∑
k=1

W (Ck)
}
.

This formula tells that we want to partition the observations into K clusters such that the total
within-cluster variation, summed over all K clusters, is as small as possible.

Solving the equation above, we need to define the within-cluster variation. There are many possible ways to
define this concept, but by far the most common choice involves squared Euclidean distance. That is, we
define

W (Ck) = 1
|Ck|

∑
i,i′∈Ck

p∑
j=1

(xij − xi/j)2,

where |Ck| denotes the number of observations in the kth cluster. The within-cluster variation for the kth
cluster is the sum of all of the pairwise squared Euclidean distances between the observations in the kth
cluster, divided by the total number of observations in the kth cluster. Combining the two equations above
gives the optimization problem that defines K-means clustering,

min
C1,...CK

{ K∑
k=1

1
|Ck|

∑
i,i/∈Ck

p∑
j=1

(xij − xi/j)2
}

Now we introduce an algorithm to solve the aove equation, that is, a method to partition the observations
into K clusters such that the objective is minimized.

Algorithm. K-Means Clustering

1. Randomly assign a number, from 1 to K, to each of the observations. These serve as initial cluster
assignments for the observations.

2. Iterate until the cluster assignments stop changing:

(a) For each of the K clusters, compute the cluster centroid. The kth cluster centroid is the vector of
the p feature means for the observations in the kth cluster.

(b) Assign each observation to the cluster whose centroid is closest (where closest is defined using
Euclidean distance).

23

The above algorithm gauranteed to decrease the value of the objective function at each step. The following
identity illustrates the reasoning:

1
|Ck|

∑
i,i ∈Ck

p∑
j=1

(xij − xi.j)2 = 2
∑
i∈Ck

p∑
j=1

(xij − x̄kj)2,

where x̄kj = 1
|Ck|

∑
i∈Ck xij is the mean for feature j in cluster Ck. In Step 2(a), the cluster means for each

feature are the constants that minimize the sum-of-squared deviations, and in Step 2(b), reallocating the
observations can only improve the objective function. This means that as the algorithm iterates, the
clustering obtained will continually improve until the result no longer changes; the objective function will
never increase. In this case, we have reached a local optimum.

3.2.2 Hierarchical Clustering

One potential disadvantage of K-means clustering is that it requires us to pre-specify the number of clusters
K. HIerarchical clustering is an alternative approach which does not require that we commit to a particular
choice of K. Hierarchical clustering has an added advantage over K-means clustering in that it resutls in an
attractive tree-based representation of the observations, called a dendrogram.

We describe bottom-up or agglomerative clustering. This is the most common type of hierarchical clustering,
and refers to the fact that a dendrogram (generally depicted as an upside-down tree) is built starting from
the leaves and combining clusters up to the trunk.

Here we introduce the hierarchical clustering algorithm.

Algorithm. Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean distance) of all the
(
n
2
)

= n(n− 1)/2
pairwise dissimilarities. Treat each observation as its own cluster.

2. For i = n, n− 1, ..., 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i clusters and identify the pair of
clusters that are least dissimilar (that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendrogram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among the i− 1 remaining clusters.

Complte Maximal intercluster dissimilarity. Compute all pairwise dissimilarities between the
observations in cluster A and the observations in cluster B, and record the largest of these
dissimilarities.

Single Minimal intercluster dissimilarity. Compute all pairwise dissimilarities between the
observations in cluster A and the observations in cluster B, and record the smallest of
these dissimilarities. Single linkage can result in extended, trailing clusters in which single
observations are fused one-at-a-time.

Average Mean intercluster dissimilarity. Compute all pairwise dissimilarities between the obser-
vations in cluster A and the observations in cluster B, and record the average of these
dissimilarities.

Centroid Dissimilarity between the centroid for cluster A (a mean vector of length p) and the
centroid for cluster B. Centroid linkage can result in undesirable inversions.

24

4 GENERALIZED LINEAR MODEL

4.1 Exponential Family

The exponential family can be written in the form

p(y; η) = b(y) exp(ηTT (y)− a(η))

and η is called the natural parameter (also called the canonical parameter) of the distribution; while T (y) is
the sufficient statistic (for the distribution we consider); and a(η) is the log partition function. The quantity
e−a(η) essentially plays the role of a normalization constant, that makes sure the distribution p(y; η)
sums/integrates over y to 1. A fixed choice of T , a and b defines a family (or set) of distributrions that is
parameterized by η; as we vary η, we then get different distributions within this family.

Write the Bernoulli distribution as

p(y;φ) = φy(1− φ)1−y

= exp(y log φ+ (1− y) log(1− φ))

= exp
((

log
(

φ
1−φ

))
y + log(1− φ)

)
.

Thus, the natural parameter is given by η = log(φ/(1− φ)). Inverting this definition for η by solving for φ in
terms of η, we obtain φ = 1/(1 + e−η), which is the sigmoid function! To complete the formulation of the
Bernoulli distribution as an exponential family distribution, we also have

T (y) = y

a(η) = − log(1− φ) = log(1 + eη)

b(y) = 1

This shows that the Bernoulli distribution can be written as above with appropriate chocie of T , a and b.

Let us consider Gaussian distribution.

p(y;µ) = 1√
2π exp

(
− 1

2 (y − µ)2
)

= 1√
2π exp

(
− 1

2y
2
)
· exp

(
µy − 1

2µ
2
)

Thus, we see that Gaussian is in the exponential family, with

η = µ

T (y) = y

a(η) = µ2/2 = η2/2

b(y) = (1/
√

2π) exp(−y2/2).

25

4.2 Constructing GLMs

Suupose you would like to build a model to estimate the number y of customers arriving in your store (or
number of page-views on your website) in any given hour, based on certain features x such as store
promotions, recent advertising, weather, day-opf-week, etc. We know that the Poisson distribution usually
gives a good model for numbers of visitors. Knowing this, how can we come up with a model for our
problem? Fortunately, the POisson is an exponential family distribution, so we can apply a GLM.

In general, consider a classification or regression problem where we would like to predict the value of some
random variable y as a function of x. To derive a GLM for this problem, we will make the following three
assumptions about the conditional distribution of y given x and about our model

1. y|x; θ ∼ Exp(η), i.e., given x and θ, the distribution of y follows some exponential family distribution,
with parameter η.

2. Given x, our goal is to predict the expected value of T (y) given x. In most examples, we will have
T (y) = y, so this means we would like the prediction h(x) output by our learned hypothesis h to satisfy
h(x) = E[y|x]. (Note that this assumption is satisfied in the choices for hθ(x) for both logistic
regression and linear regression. For example, in logistic regression, we had
hθ(x) = p(y = 1|x; θ) = 0 · p(y = 0|x; θ) + 1 · p(y = 1|x; θ) = E[y|x; θ].)

3. The natuaral parameter η and the inputs x are related linearly: η = θTx. Or, if η is vector-valued,
then ηi = θTi x.

4.2.1 Ordinary Least Squarers

Ordinary least squares is a special case of the GLM family of models. Consider the setting where the target
variable y (also called the response variable in GLM terminology) is continuous. We model conditional
distribution of y given x as a Gaussian N (µ, σ2). Thus we let the Exp(η) distribution above be the Gaussian
distribution. In the formulation of the Gaussian as an exponential family distribution, we had µ = η. Thus,
we have

hθ(x) = E[y|x; θ]
= µ
= η
= θTx.

The first equality follows from Assumption above; and the second equality follows from the fact that
y|x; θ ∼ N (µ, σ2), and so its expected value is given by µ; the third equality follows from Assumption 1 (and
our earlier derivation showing that µ = η in the formulation of the Gaussian as an exponential family
distribution); and the last equality follows from Assumption 3.

4.2.2 Logistic Regression

Now we consider logistic regression. For this case, we are interested in binary classification in the form
y ∈ {0, 1}. Given that y is binary-valued, it therefore seems natural to choose the Bernoulli family of
distributions to model the conditional distribution of y given x. In our formulation of the Bernoulli
distribution as an exponential family distribution, we had φ = 1/(1 + eη). Hence, following a similar
derivation as the one for ordinary least squares, we obtain

hθ(x) = E[y|x; θ]
= 1/(1 + eη)
= 1/(1 + e−θ

T x)

26

This gives us hypothesis functions of the form hθ(x) = 1/(1 + e−θ
T x). Once we assume that y conditioned on

x is Bernoulli, it arises as a consequence of the definition of GLMs and exponential family distributions. The
function g given the distribution’s mean as a function of the natural parameter g(η) = E[T (y); η] is called
the canonical response function. Its inverse, g−1, is called the canonical link function. Thus, the canonical
response function for the Gaussian family is just the identify function; and the canonical response function
for the Bernoulli is the logistic function.

4.2.3 Softmax Regression

Consider a classification problem in which the response variable y can take on any one of k values, so
y ∈ {1, 2, ..., k}. For example, rather than classifying email into the two classes spam or not-spam — which
would have been a binary classification problem — we might want to classify it into three classes, such as
spam, personal mail, and work-related mail. The response variable is still discrete, but can now take on more
than two values. We will thus model it as distributed according to a multinomial distribution.

Let us derive a GLM for modelling this type of multinomial data. Let us begin by writing the multinomial as
an exponential family distribution.

To parameterize a multinomial over k possible outcomes, one could use k parameters φ1, ..., φk specifying the
probability of each of the outcomes. However, these parameters would be redundant, or more formally, they
would not be independent (since knowing any k − 1 of the φi’s uniquely determines the last one, as they
must satisfy

∑k
i−1 φi = 1). Thus, we will instead parameterize the multinomial with only k − 1 parameters,

φ1, ..., φk−1, where φi = p(y = i;φ), and p(y = k;φ) = 1−
∑k−1
i=1 φi, but we should keep in mind that this is

not a parameter, and that it is fully specified by φ1, ..., φk−1.

To express the multinomial as an exponential family distribution, we will define T (y) ∈ Rk−1 as follows:

T (1) =


1
0
0
...
0

 , T (2) =


0
1
0
...
0

 , T (3) =


0
0
1
...
0

 , ..., T (k − 1) =


0
0
0
...
1

 , T (k) =


0
0
0
...
0


Here we do not have T (y) = y; also, T (y) is now a k − 1 dimensional vector, rather than a real number. We
will write (T (y))i to denote the i-th element of the vector T (y).

An indicator function 1{·} takes on a value of 1 if its argument is true, and 0 otherwise (1{True} = 1,
1{False} = 0). For example, 1{2 = 3} = 0, and 1{3 = 5− 2} = 1. Thus we can also write the relationship
between T (y) and y as (T (y))i = 1{y = i}. Moreover, we have that E[(T (y))i] = P (y = i) = φi.

Now let us show that multinomial is a member of the exponential family.

27

p(y;φ) = φ
1{y=1}
1 φ

1{y=2}
2 . . . φ

1{y=k}
k

= φ
1{y=1}
1 φ

1{y=2}
2 . . . φ

1−
∑k−1

i=1
1{y=i}

k

= φ
(T (y))1
1 φ

(T (y))2
2 . . . φ

1−
∑k−1

i=1
(T (y))i

k

= exp((T (y))1 log(φ1) + (T (y))2 log(φ2) + · · ·+ (1−
∑k−1
i=1 (T (y))i) log(φk))

= exp((T (y))1 log(φ1/φk) + (T (y))2 log(φ2/φk) + · · ·+ (T (y))k−1 log(φk−1/φk) + log(φk))
= b(y) exp(ηTT (y)− a(η))

where

η =


log(φ1/φk)
log(φ2/φk)

...
log(φk−1/φk)


a(η) = − log(φk)
b(y) = 1.

This finishes the formulation of the multinomial as an exponential family distribution. The link function is
given, for i = 1, ..., k, there is

ηi = log φi
φk
.

For convenience, we have also defined ηk = log(φk/φk) = 0. To invert the link function and derive the
response function, we therefore have that

eηi = φi
φk

φke
ηi = φi

φk

k∑
i=1

eηi =
k∑
i=1

φi = 1

This implies that φk = 1/
∑k
i=1 e

ηi , which can be substituted back into above equations and we have
response function

φi = eηi∑k
j=1 e

ηj

This function mapping from the η’s to the φ’s is called the softmax function.

To complete our model, we use Aasumption 3 that the ηi’s are linearly related to the x’s. Thus, we have
ηi = θTi x (for i = 1, ..., k − 1), where θ1, ..., θk−1 are the parameters of our model. We can define θk = 0, so
that ηk = θTk x = 0. Hence, our model assumes that the conditional distribution of y given x is given by

p(y = i|x; θ) = φi
= eηi∑

j=1keηj

= e
θT
i
x∑k

j=1
e
θT
j
x

28

This model, which applies to classification problems where y ∈ {1, ..., k}, is called softmax regression. It is a
generalization of logistic regression. Our hypothesis will output

hθ(x) = E[T (y)|x; θ]

= E

[
1{y = 1}
1{y = 2}

...
1{y = k − 1}

 |x; θ
]

=


φ1
φ2
...

φk−1



=



exp(θT1 x)∑k

j=1
exp(θT

j
x)

exp(θT2 x)∑k

j=1
exp(θT

j
x)

...
exp(θ1k−1T x)∑k

j=1
exp(θT

j
x)


In other words, our hypothesis will output the estimated probability that p(y = i|x; θ), for every value of
i = 1, ..., k. Even though hθ(x) as defined above is only k − 1 dimensional, clearly p(y = k|x; θ) can be
obtained as 1−

∑k−1
i=1 φi.

Last, let us discuss parameter fitting. Similar to our original derivation of ordinary least squares and logistic
regression, if we have a training set of m examples {(x(i), y(i)); i = 1, ...,m} and would like to learn the
parameters θi of this model, we would begin by writing down the log-likelihood

l(θ) =
∑m
i=1 log p(y(i)|x(i); θ)

=
∑m
i=1 log

∏k
l=1

(
e
θT
l
x(i)∑k

j=1
e
θT
j
x(i)

)

To obtain the second equality, we used the definition for p(y|x; θ) given in updated conditional distribution of
y. We can now obtain the maximum likelihood estimate of the parameters by maximizing l(θ) in terms of θ,
using a method such as gradient ascent or Newton’s method.

29

5 RESAMPLING AND MODEL SELECTION

The objective for model selection is that we often times have multiple models ahead of us and for each of
them there is a lot of tuning needed to perform high testing set accuracy. Cross validation is a method which
tries to select the best model from a given set of models. In model selection, we assume that quality measure
is predictive performance. “Set of models” can simply mean “set of different parameter values.”

For example, we can consider a model selection problem for SVM. The SVM is a family of models indexed by
the margin parameter γ and the kernel parameters σ. Our goal is to find a value of (γ, σ) for which we can
expect small generalization error. We can include (γ, σ) into the optimization problem, i.e. train by
minimizing over α and (γ, σ). This leads to a phenomenon called overfitting: the classifier adapts too closely
to specific properties of the training data, rather than the underlying distsribution. For illustration, plotted
graphs will have training error decrease as model gets more and more complicated yet testing error may
decrease first but increase later. If classifier can adapt too well to the data, there may be small training error,
but possibly large testing error. If classifier can hardly adapt at all, there is large training error and also
testing error. An ideal model would lie somewhere in between.

5.1 Cross Validation

First, we randomly split data into three sets: training, validation and test data. Second, label training
classifier on training data for different values of parameters, say γ. Third, evaluate each trained classifier on
validation data, i.e., compute error rate on validation data. Fourth, select the value of parameters with the
lowest error rate from validation data. Last, use the parameter from previous step to compute error rate for
the test data.

The quality measure by which we are comparing different classifiers f ·; γ) for different aprameter values γ is
the risk

R(f(·; γ)) = E[L(y, f(x; γ))].

Since we do not know the true risk, we estimate it from data as R̂(f ·; γ)). We always have to assume that
the classifier is better adapted to any data used to select it than to actual data distribution. The final model,
ideally, would adapt classifier to both training and validation data. If we estimate error rate on this data, we
will in general underestimate it. The procedure for Cross Vlidation is as follows:

1. For each value in parameter γ1, ..., γm, train a classifier f(·, γj) on the training set.

2. Use the validation set to estimate R(f(·; γj)) as the empirical risk

R̂(f(x; γj)) = 1
nv

nv∑
i=1

L(ỹi, f(x̃i, γj)),

while nv is the size of the validation set.

3. Select the value γ∗ which achieves the smallest estimated error.

4. Re-train the classifier with parameter γ∗ on all data except the test set (i.e. on training + validation
data).

5. Report error estimate R̂(f(·; γ∗)) computed on the test set.

5.2 K-Fold Cross Validation

The idea is that each of the error estimates computed on validation set is computed from a single example of
a trained classifier. We want to improve this estimates? The strategy is to set aside the test set. We want to

30

split the remaining data into K blocks Use each block in turn as validation set. Perform cross validation and
average the results over all K combinations. This method is called $K-fold cross validation.

To estimate the risk of a classifier f(·, γj), we operate the following procedure:

1. Split data into K equally sized blocks.

2. Train an instance fk(·, γj) of the classifier, using all blocks except block k as training data.

3. Compute the cross validation estimate

R̂CV (f(·, γj)) := 1
K

1
|block k|

∑
(x̃,ỹ)

31

6 NON-LINEAR REGRESSION

6.1 Polynomial

To be replace traditional linear model

yi = β0 + β1xi + εi

we consider a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i + εi,

where εi is the error term. This approach is known as polynomial regression.

6.2 Step Function

Using polynomial functions of the features as predictors in a linear model imposes a global structure on the
non-linear of X. Instead we can also use step functions in order to avoid imposing such a global structure.
We break the range of X into bins, and fit a different constant in each bin. This amounts to converting a
continuous variable into an ordered categorical variable.

In details, we create cutpoints c1, c2, ..., cK in the range of X, and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

where I(·) is an indicator function that returns a 1 if the condition is true, and returns a 0 otherwise. These
dummy variables are created to sum to 1, that is, for any X, C0(X) + C1(X) + · · ·+ CK(X) = 1.We can
then use least squares to fit a linear model using C1(X), C2(X), ..., CK(X) as predictors:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + εi.

6.3 Basis Functions

Polynomial and piecwise-constant regression models are special cases of a basis function approach. The idea
is to have at hand a family of functions or transformations that can be applied to a variable
X : b1(X), b2(X), ..., bK(X). Instead, we fit the model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + · · ·+ βKbK(xi) + εi.

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known. For polynomial regression, the basis
functions are bj(xi) = xji , and for piece wise constant functions they are bj(xi) = I(cj ≤ xi < cj+1).

32

6.4 Regression Splines

6.4.1 Piecewise Polynomials

Instead high-degree polynomial over the entire range of X, piecewise polynomial regression involves fitting
separate low-degree polynomials over different regions of X. For example, a piecewise cubic polynomial
works by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi,

where the coefficients β0, β1, β3 differ in different parts of the range of X. The points where the coefficients
chane are called knots.

6.4.2 Constraints and Splines

Sometimes the scatter plot versus the non-linear plot for models look very much non-comparable. To fix this
problem,m we can adjust our model by fitting a piecewise polynomial under the constraint that the fitted
curve must be continuous. Such way the non-linear plot will look continuous and more natural. In doing
such, we are reducing degrees of freedom for partial piecewise polynomials.

33

7 TREE CLASSIFIERS

This chapter we describe tree-based methods for regression and classification. These involve stratifying or
segmenting the predictor space into a number of simple regions. We introduce bagging, random forests, and
boosting. Each of these approaches involves producing multiple trees which are then combined to yield a
single consensus prediction.

7.1 Regression Tree

How to build a regression tree? There are two steps.

1. We divide the predictor space — that is, the set of possible values for X1, X2, ..., Xp — into J distinct
and non-overlapping regions, R1, R2, ..., RJ .

2. For every observation that falls into the region Rj , we make the same prediction, which is simply the
mean of the response values for the training observations in Rj

For instance, suppose that in Step 1 we obtain two regions, R1 and R2, and that the response mean of the
training observations in the first region is 10, while the response mean of the training observations in the
second region is 20. Then for a given observation X = x, if x ∈ R1 we will predict a value of 10, and if
x ∈ R2 we will predict a value of 20.

The goal is to find boxes R1, ..., RJ that minimize the RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2,

where ŷRj is the mean response for the training observations within the jth box. We apply a top-down
approach that is known as recursive binary splitting. This method begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new branches further down on the tree.

To perform such recursive binary splitting, we first select the predictor Xj and the cutpoint s such that
splitting the predictor space into the regions {X|Xj < s} and X|Xj ≥ s} leads to the greatest possible
reduction in RSS. In details, for any j and s, we define the pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s},

and we seek the value of j and s that minimize the equation

∑
i:xi∈R1(j,s)

(yi − ŷR1)2 +
∑

i:xi∈R2(j,s)

(yi − ŷR2)2,

where ŷR1 is the mean response for the training observations in R1(j, s), and ŷR2 is the mean response for
the training observations in R2(j, s).

Next, we repeat this process, looking for the best predictor and best cutpoint in order to split the data
further so as to minimize the RSS within each of the resulting regions. However, instead of splitting the
entire predictor spacewe split one of the two previously identified regions.

34

7.2 Pruning

The process described above many produce good predictions on training set, but is likely to overfit the data,
leading to poor testing set performance. This is because the resulting tree might be too complex. A smaller
tree with fewer splits might lead to lower variance and better interpretation at the cost of a little bias.

A better strategy is to grow a very large tree T0, and then prune it back in order to obtain a subtree. How
do we determine the best way to prune the tree? We want to select a subtree that leads to the lowest test
error. We want to select efficiently a small set of subtrees for consideration.

Cost complexity pruning — also known as weakest link pruning — gives us a way to do just this.

Algorithm Building a Regression Tree

1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each
terminal node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a
function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training observations into K folds. For
each k = 1, ...,K:

(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.

(b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α.
Average the results for each value of α, and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α.

For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible. Here |T | indicates the number of terminal noces of the tree T , Rm is the rectangle
corresponding to the mth terminal noce, and ŷRm is the predicted response associated with Rm — that is,
the mean of the training observations in Rm. The tuning parameter α controls a trade-off between the
subtree’s complexity and its fit to the training data.

7.2.1 Classification Trees

A classification tree is very similar to a regression tree, except that it is used to predict a qualitative response
rather than a quantitative one. For a classification tree, we predict that each observation belongs to the most
commonly occurring class of training observations in the region to which it belongs. We are interested not
only in the class prediction corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is similar to the task of growing a regression tree. Since we plan to
assign an observation in a given region to the most commonly occurring class of training observations in that
region, the classification error rate is simply the fraction of the training observations in that region that do
not belong to the most common class:

E = 1−max
k

(p̂mk).

In this case, p̂mk represents the proportion of training observations in the mth region that are from the kth
class. Howeut that classification error is not sufficiently sensitive for tree-growing.

35

The Gini index is defined by

G =
K∑
k=1

p̂mk(1− p̂mk),

a measure of total variance across the K classes. It is not hard to see that the Gini index takes on a small
value if all of the p̂mk’s are close to zero or one. For this reason the Gini index is referred to as a measure of
node purity — a small value indicates that a node contains predominantly observations from a single class.

An alternative to the Gini index is entropy, given by

D = −
K∑
k=1

p̂mk log p̂mk.

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that the entropy will take on a value
near zero if the p̂mk’s are all near zero or near one. Therefore, like the Gini index, the entopy will take on a
small value if the mth node is pure. In fact, it turns out that the Gini index and the entropy are quite
similar numerically.

7.2.2 Advantages and Disadvantages of Trees

Trees are very easy to explain to people. In fact, they are even easier to explain than linear regression! Some
people that decision trees more closely mirror human decision-making than do regression and classification
hes seen in previous sectiTrees can be displayed graphically, and are easily interpreted evespecially if they are
small). Trees can easily handle qualitative predictors without the need to create variables.

Unfortunately, trees generally do not have the same level of predictive accuracy as some of the other
regression and classification approaches seen before. Additionally, trees can be very non-robust. In otherords,
a small change in the data can cause a large change in the final estimated tree.

7.3 Bagging

Bootstrap is an extremely powerful idea. Here we see that the bootstrap can be used in a completely
different context, such as decision trees.

Decision trees suffer from high variance. This means that if we split the training data into two parts at
random and fit a decision tree the results that we get could be quite different. Bootstrap aggregation, or
bagging, is a general-purpose procedure for reducing the variance of a statistical learning method; we
introduce it here because it is particularly useful and frequently used in the context of decision trees.

Given a set of n independent observations X1, ..., Xn, each with variance σ2, the variance of the mean Z̄ of
the observations is given by σ2/n. In other words, averaging a set of observations reduces variance. Hence, a
natural way to reduce the variance and hence increase the prediction accuracy of statistical learning method
is to take many training sets from the population, build a separate prediction model using each training set,
and average the resulting predicdtions. We calculate f̂1(x), f̂2(x), ..., f̂B(x) using B separate training sets,
and average them in order to obtain a single low-variance statistical learning model, given by

f̂avg(x) = 1
B

B∑
b=1

f̂ b(x).

In practice, this is not accessable because we need multiple training sets. Instead, we can bootstrap, by
taking repeated samples from the single training data set. In this approach we generate B different

36

bootstrapped training data sets. Then we train our method on the bth bootstrapped training set in order to
get f̂∗b(x), and finally average all the predictions, to obtain

f̂bag(x) = 1
B

B∑
b=1

f̂∗b(x).

This is called bagging.

7.3.1 Out-of-bag (OOB)

In general each bagged tree makes of two-thirds of the observations. The remaining one-third of the
observations not used to fit given bagged tree are referred to as the out-of-bag (OOB) observations. We can
predict the response for the ith observation using each of the trees in which that observation was OOB. This
way, each prediction results an overall OOB MSE for a regression problem or classification error for a
classification problem.

7.4 Random Forests

Random forests provide improvement over bagged trees by way of a small tweak that decorrelates the trees.
As in bagging decision trees on bootstrapped training sample. In the process of building decision trees, a
split in a tree occurs each time; and a random sample of m predictors is chosen as split candidates from the
full set of p predictors. In other words, in building a random forest, at each split in the tree, the algorithm is
not allowed to consider a majority of the vailable predictors.

Random forests force each split to consider only a subset of the predictors. Therefore, on average (p−m)/p
of the splits will not consider the strong predictor, and so other predictors will have more of a chance. This
process, random forests, can also be thought of as decorrelating the trees, thereby making the average of the
resulting trees less variable and hence more reliable. Thus, the main difference between bagging and random
forests is the choice of predictor subset size m.

7.5 Boosting

Boosting is another approach for improving the predictions resulting from a decision tree. Like bagging,
boosting is a general approach that can be applied to many statistical learning methods for regression or
classification. Boosting works in a similar way as bagging, except that the trees are grown sequentially: each
tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling;
instead each tree is fit on a modified version of the original data set.

Unlike fitting a single large decision tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current model, we fit a decision tree to
the residuals from the model. That is, we fit a tree using the current residuals, rather than the outcome Y ,
as the response. We then add this new decision tree into the fitted function in order to update the residuals.
Each of these trees can be rather small, with just a few terminal nodes, determined by the parameter d in
the algorithm.

By fitting small trees to the residuals, we slowly improve f̂ in areas where it does not perform well. The
shrinkage parameter λ slows the process down even further, allowing more and different shaped trees to
attack the residuals. In general, statistical learning approaches that learn slowly tend to perform well. Note
in boosting, unlike in bagging, the construction of each tree depends strongly on the trees that have already
been grown.

Boosting classification trees proceeds in a similar but slightly more complex way. Boosting has three tuning
parameters:

37

1. The number of trees B. Unlike bagging and random forests, boosting can overfit if B is too large,
although this overfitting tends to occur slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls the rate at which boosting learns.

3. The number d of splits in each tree, which controls the complexity of the boosted ensemble. Often
d = 1 works well, in which case each tree is a stump, consisting of a single split.

Algorithm. Boosting for Regression.

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, ..., B, repeat:

(a) Fit a tree f̂ b with d splits (d+ 1 terminal nodes) to the training data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x).

(c) Update the residuals,

ri ← ri − λf̂ b(xi).

3. Output the boosted model,

f̂(x) =
B∑
b=1

λf̂ b(x).

38

8 SUPPORT VECTOR MACHINE

8.1 Hyperplanes

We introduce hyperplanes as a foundation to the theoretical framework of SVM. A hyperplane in Rd is a
linear subspace of dimension (d− 1). For d = 2, the hyperplane is a line; and for d = 3, it is a plane. A
hyperplane H can be represented by a normal vector. The hyperplane with normal vector vH is the set

H = {x ∈ Rd| < x, vH >= 0}.

We can also determine which side of plane are we on. The projection of x onto the direction of vH has length
< x, vH > measured in units of vH , i.e. length < x, vH > /||vH || in the units of the coordinates. Based on
cosine rule cos θ = <x,vH>

||x||·||vH || , the distance of x from the plane is given by

d(x,H) = < x, vH >

||vH ||
= cos θ · ||x||.

We can then decide the side of the plane x is on using

sgn(cos θ) = sgn < x, vH >

An affine hyperplane HW is a hyperplane translated (shifted) by a vector w, i.e. Hw = H + w. We choose w
in the direction of vH , i.e. w = c · VH for c > 0. Then we decide which side of plane we are on by computing

sgn(< x− w, vH >) = sgn(< x, vH > −c < vH , vH >) = sgn(< x, vH > −c||vH ||2)

If vH is a unit vector, we can use sgn(< x− vH >, vH) = sgn(< x, vH > −c).

8.2 Linear Classifier

A linear classifier is a function of the form

fH(x) := sgn(< x, vH > −c),

where vH ∈ Rd is a vector and c ∈ R+. Note that we usually assume vH to be a unit vector. If it is not, fH
still defines a linear classifier, but c describes a shift of a different length. We have the following definition.
Two sets A,B ∈ Rd are called linearly separable if there is an affine hyperplane H which separates them,
i.e. which satisfies

< x, vH > −c =
{
< 0 if x ∈ A
> 0 if x ∈ B

8.3 Maximum Margin

Suppose we have a classification problem with response Y = −1 or Y = 1. If the class can be separated, most
likely, there will be an infinite number of hyperplanes separating the classes. The idea is to draw the largest
possible empty margin around the hyperplane. Out of all possible hyperplanes that separate the two classes,
choose the one such that distance to closest point in each class is maximal. This distance is called the
margin. The classifier should cut off as little probability mass as possible from either distribution. Such
method is called optimal generalization. For occasions that we cannot or do not know the density contour,

39

we would use convex hull as a substituion. If C is a set of points containing all points in C is called the
convex hull of C, denoted conv(C). The coner points of the convex set are called extreme points. Every
point x in a convex set can be represented as a convex combination of the extreme points {e1, ..., eM}. There
are weights α1, ..., αm ∈ R+ such that

x =
m∑
i=1

αiei and
m∑
i=1

αi = 1

The coefficients αi in the above equation are called barycentric coordinates of x.

The key idea is the following. A hyperplane separates two classes if and only if it separates their convex hull.
Before we proceed, let us introduce some definitions. The distance between a point x and a set A the
Euclidean distance between x and the closest point in A:

d(x,A) := min
y∈A
||x− y||

In particular, if A = H is a hyperplane, d(x,H) := min
y∈H
||x− y||. The margin of a classifier hyperplane H

given two training classes X− and X+ is the shortest distance between the plane and any point in either set:

margin = min
x∈X−∪X+

d(x,H)

Equivalently, we write the shortest distance to either of the convex hulls is given by

margin = min{d(H, conv(X−), d(H, conv(X+)}

For normal vector vH , we have the following to identify different signs

< vH , x > −c
{
> 0 x on positive side
< 0 x on negative side

The scalar c ∈ R specifies shift (plane through origin if c = 0). Then the demand is < vH , x > −c > 1 or
< −1 with {−1, 1} on the right works for any margin. The size of margin is determined by ||vh||. To increase
margin, we scale down vH . The concept of margin applies only to training, not to classification.
Classification works as for any linear classifier. For a test point x:

y = sign(< vH , x > −c)

For n training points (x̃i, ỹi) with labels ỹi ∈ {−1, 1}, solve optimization problem

min
vH ,c
||vH || such that ỹi(< vH , x̃i > −c) ≥ 1 for i = 1, ..., n

The classifier obtained by solving this optimization problem is called a support vector machine. We can
project a vector x (say, an observation from training data) onto the direction of vH and obtain vector xV . If
H has no offset (c = 0), the Euclidean distance of x from H is

d(x,H) = ||xv|| = cos θ · ||x||.

It does not depend on the length of vH . The scalar product < x, vH > does increase if the length of vH
increases. To compute the distance ||XV || from < x, vH >, we have to scale out ||vH ||:

40

||xV || = cos θ · ||x|| = < x, vH >

||vH ||

8.4 Kernels

For kernels, we have the following motivation. First, we assume there is a linear decision boundary. Next,
there exist perceptrons, which are linear separability and placement of boundary rather arbitrary. For
example, the SVM uses the scalar product < x, x̃i > as a measure of similarity between x and x̃i, and of
distance to the hyperplane. Since the scalar product is linear, the SVM is a linear method. By using a
nonlinear function instead, we can make the classifier nonlinear.

More precisely, scalar product can be regarded as a two-argument function

< ·, · >: Rd × Rd → R

We will replace this function with a function k : Rd × Rd → R and substitute

k(x, x′) for every occurrence of < x, x′ >

in the SVM formulae. Under certain conditions on k, all optimization/classification results for the SVM still
hold. Functions that satisfy these conditions are called kernel functions.

8.4.1 RBF

RBF Kernel, which takes the following form,

kRBF (x, x′) := exp
(
− ||x− x

′||22
2σ2

)
is called an RBF kernel (i.e. radial basis function). The paramter σ is called bandwith. Other names for
kRBF are Gaussian kernel, squared-exponential kernel. If we fix x′, the function kRBF (·, x′) is up to scaling a
spherical Gaussian density on Rd, with mean x′ and standard deviation σ.

To define a kernel, we have to define a fucntion of two arguments and prove that it is a kernel. This is done
by checking a set of necessary and sufficient conditions known as “Mercer’s Theorem”. In practice, the data
analyst does not define a kernel, but tries some well-known standard kernels until one seems to work. MOst
common choises are RBF kernel, or the linear kernel, kSP (x, x′) =< x, x′ >, i.e., the standard. One a kernel
is chosen, the classifier can be trained by solving the optimization problem using standard software. SVM
software packages include implementations of most common kernels.

8.4.2 Definition: Kernel Function

A function k : Rd × Rd → R is called a kernel on Rd if there is some function φ : Rd → F into some space F
with scalar product < ·, · >F such that

k(x, x′) =< φ(x), φ(x′))F for all x, x′ ∈ Rd.

In other words, k is a kernel if it can be interpreted as a scalar product on some other space. If we substitute
k(x, x′) for < x, x′ > in all SVM equations, we implicitly train a linear SVM on the space F . The SVM still
wroks and it just uses scalar products on another space.

41

The mapping φ has to transform the data into data on which a linear SVM works well. This is usually
achieved by choosing F as a higher-dimensional space than Rd. In previous example, we have to know what
the data looks like to choose φ. The solution is to choose high dimension h for F , to choose components φi
of φ(x) = (φ1(x), ..., φh(x)) as different nonlinear mappings. If two points differ in Rd, some of the nonlinear
mappings will amplify differences. The RBF kernel is an extreme case. The function kRBF can be shown to
be a kernel, however: F is infinite-dimensional for this kernel.

8.4.3 Mercer’s Theorem

A mathematical result called Mercer’s Theorem states that, if the function k is positive, i.e.,

∫
Rd×Rd

k(x, x′)f(x)f(x′)dxdx′ ≥ 0

for all functions f , then it can be written as

k(x, x′) =
∞∑
j=1

λjφj(x)φj(x′).

The φj are functions Rd → R and λi ≥ 0. This means the possibly infinite vector
φ(x) = (

√
λ1φ(x),

√
λ2φ2(x), ...) is a feature map.

Many linear machine learning and statistics algorithms can be “kernelized”. The only condition are: (1) the
algorithm uses a scalar product, and (2) in all relevant equations, the data (and all other elements of Rd)
appear only inside a scalar product. This approach to making algorithms non-linear is known as the “kernel
trick”. It is an optimization problem. Consider

min
vH ,c
||vH ||2F + γ

n∑
i=1

ξ2 such that yi(< vH , φ(x̃i) > −c) ≥ 1− ξi and ξ ≥ 0

Note: vH lives in F , and || · ||F and < ·, · >F are norm and scalar product on R. We can transform and
solve as a dual optimization problem

max
α∈Rn

W (α) :=
n∑
j=1

αi −
1
2

n∑
i,j=1

αiαj ỹiỹj(k(x̃i, x̃j) + 1
γ
I{i = j})

such that
n∑
i=1

yiαi = 0 and αi > 0

Then the Classifier is f(x) = sgn
(∑n

i=1 ỹiα
∗
i k(x̃i, x)− c

)
.

8.5 Support Vectors

The extreme points of the convex hulls which are closest to the hyperplane are called the support vectors.
There are at least two support vectors, one in each class. The maximum-margin criterion focusses all
attention to the area closest to the decision surface. Small changes in the support vectors can result in
significant changes of the classifier. In practice, the approach is combined with “slack variables” to permit
overlapping classes. As a side effect, slack variables soften the impact of changes in the support vectors.

To solve SVM optimization problem

42

min
vH ,c
||vH || such that ỹi(< vH , x̃i > −c) ≥ 1 for i = 1, ..., n

is difficult, because the constraint is a function. It is possible to transform this problem into a problem which
seems more complicated, but has simpler constraints:

max
α∈Rn

W (α) :=
n∑
i=1

αi −
1
2αiαj ỹiỹj < x̃i, x̃j >

such that
n∑
i=1

ỹiαi = 0 while αi ≥ 0 for i = 1, ..., n

This is called the optimization problem dual to the minimization problem above. It is usually derived using
Lagrange multipliers. We will use a more geometric argument.

Many dual relations in convex optimization can be traced back to the following fact: The closest distance
between a point x and a convex set A is the maximum over the distances between x and all hyperplanes
which separate x and A, mathematically,

d(x,A) = sup
H separating

d(x,H)

8.6 Optimization

8.6.1 Optimization Problems

An optimization problem for a given function f : Rd → R is a problem of the form

min
x
f(x)

which we read as “find x0 = arg minx f(x)”. A constrained optimization problem adds additional
requirements on x

min
x
f(x) subject to x ∈ G,

where G ⊂ Rd is called the feasible set. The set G is often defined by equation, e.g.,

min
x
f(x) subject to g(x) ≥ 0

The equation g is called a constraint. For optimization problems, we discuss global and lcoal minimum. In
Rd, 5f(x) = 0 and Hf (x) =

(
∂f

∂xi∂xj

)
i,j=1,2,...,n are positive definite.

8.6.2 Gradient Descent

Gradient Descent searches for a minimum of f .

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, ..., there is
xn+i := xn − f ′(xn)

3. Terminate when |f ′(xn)| < ε.

43

8.6.3 Newton’s Method

Newton’s method searches for a root of f , i.e., it solves the equation f(x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, ..., there is
xn+i := xn − f(xn)/f ′(xn)

3. Terminate when |f(xn)| < ε.

We can also use Newton’s Method for minimization by applying it to solve f ′(x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, ..., there is
xn+i := xn − f ′(xn)/f ′′(xn)

3. Terminate when |f ′(xn)| < ε.

8.6.4 Karush-Kuhn-Tucker

The idea is the following. We want to decompose 5f into a component (5f)s in the set {x|g(x) = 0} and a
remainder (5f)⊥. The two components are orthogonal. If fg is minimal within {x|g(x) = 0}, the component
within the eset vanies. The remainder need not vanish. The consequence is that we need to solve for a
criterion for (5f)g = 0. If (5f)g = 0, then 5f is orthogonal to the set g9x) = 0. Since gradients are
orthogonal to contours, and the set is a contour of g, 5g is also orthogonal to the set. Hence, at a minimum
of fg, the two gradients point in the same direction: 5f + λ5 g = 0 for some scalar λ 6= 0.

The optimization problem with inequality constraints

min f(x) subject to g(x) ≤ 0

can be solved by solving

5f(x) = −λ5 g(x)
λg(x) = 0
g(x) ≤ 0
λ ≥ 0

 system of d+ 1 equations for d+ 1 variables x1, ..., xD, λ

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.

44

9 NEURO-NETWORK

9.1 A Neuron

The area of Neural Networks has originally been primarily inspired by the goal of modeling biological neural
systems, but has since diverged and become a matter of engineering and achieving good results in Machine
Learning tasks. Nonetheless, we begin our discussion with a very brief and high-level description of the
biological system that a large portion of this area has been inspired by.

The basic computational unit of the brain is a neuron. Approximately 86 billion neurons can be found in the
human nervous system and they are connected with approximately 1014 − 1015 synapses.Each neuron
receives input signals from its dendrites and produces output signals along its (single) axon. The axon
eventually branches out and connects via synapses to dendrites of other neurons. In the computational model
of a neuron, the signals that travel along the axons (e.g. x0) interact multiplicatively (e.g. w0x0) with the
dendrites of the other neuron based on the synaptic strength at that synapse (e.g. w0). The idea is that the
synaptic strengths (the weights w) are learnable and control the strength of influence (and its direction:
excitory (positive weight) or inhibitory (negative weight)) of one neuron on another. In the basic model, the
dendrites carry the signal to the cell body where they all get summed. If the final sum is above a certain
threshold, the neuron can fire, sending a spike along its axon. In the computational model, we assume that
the precise timings of the spikes do not matter, and that only the frequency of the firing communicates
information. Based on this rate code interpretation, we model the firing rate of the neuron with an activation
function f, which represents the frequency of the spikes along the axon. Historically, a common choice of
activation function is the sigmoid function σ since it takes a real-valued input (the signal strength after the
sum) and squashes it to range between 0 and 1. We will see details of these activation functions later in this
section. In other words, each neuron performs a dot product with the input and its weights, adds the bias
and applies the non-linearity (or activation function), in this case the sigmoid σ(x) = 1/(1 + e−x).

9.2 Neuron as Linear Classifier

The mathematical form of the model Neuron’s forward computation might look familiar to you. As we saw
with linear classifiers, a neuron has the capacity to “like” (activation near one) or “dislike” (activation near
zero) certain linear regions of its input space. Hence, with an appropriate loss function on the neuron’s
output, we can turn a single neuron into a linear classifier:

Binary Softmax Classifier. For example, we can itnerpret σ(
∑
i wixi + b) to be the probability of one of the

classes P (yi = 1|xk;w). The probability of the other class would be P (yi = 0|xi;w) = 1− P (yi = 1|xi;w),
since they must sum to one. With this interpretation, we can formulate the cross-entropy loss as we have
seen in the Linear Classification section, and optimizing it would lead to a binary Softmax classifier (also
known as logistic regression). Since the sigmoid function is restricted to be between 0-1, the predictions of
this classifier are based on whether the output of the neuron is greater than 0.5.

Binary SVM Classifier. Alternatively, we could attach a max-margin hinge loss to the output of the neuron
and train it to become a binary Support Vector Machine.

Regularization Interpretation. The regularization loss in both SVM/Softmax cases could in this biological
view be interpreted as gradual forgetting, since it would have the effect of driving all synaptic weights ww
towards zero after every parameter update.

9.3 Activation Functions

Every activation function (or non-linearity) takes a single number and performs a certain fixed mathematical
operation on it. There are several activation functions you may encounter in practice:

45

9.3.1 Sigmoid

The sigmoid non-linearity has the mathematical form σ(x) = 1/(1 + e−x) and is shown in the image above on
the left. As alluded to in the previous section, it takes a real-valued number and “squashes” it into range
between 0 and 1. In particular, large negative numbers become 0 and large positive numbers become 1. The
sigmoid function has seen frequent use historically since it has a nice interpretation as the firing rate of a
neuron: from not firing at all (0) to fully-saturated firing at an assumed maximum frequency (1). In practice,
the sigmoid non-linearity has recently fallen out of favor and it is rarely ever used. It has two major
drawbacks:

(1) Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid neuron is that when
the neuron’s activation saturates at either tail of 0 or 1, the gradient at these regions is almost zero.
Recall that during backpropagation, this (local) gradient will be multiplied to the gradient of this
gate’s output for the whole objective. Therefore, if the local gradient is very small, it will effectively
“kill” the gradient and almost no signal will flow through the neuron to its weights and recursively to its
data. Additionally, one must pay extra caution when initializing the weights of sigmoid neurons to
prevent saturation. For example, if the initial weights are too large then most neurons would become
saturated and the network will barely learn.

(2) Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers of processing in
a Neural Network (more on this soon) would be receiving data that is not zero-centered. This has
implications on the dynamics during gradient descent, because if the data coming into a neuron is
always positive (e.g. x > 0 elementwise in f = wx + b), then the gradient on the weights w will during
backpropagation become either all be positive, or all negative (depending on the gradient of the whole
expression f). This could introduce undesirable zig-zagging dynamics in the gradient updates for the
weights. However, notice that once these gradients are added up across a batch of data the final update
for the weights can have variable signs, somewhat mitigating this issue. Therefore, this is an
inconvenience but it has less severe consequences compared to the saturated activation problem above.

9.3.2 Tanh

The tanh non-linearity is shown on the image above on the right. It squashes a real-valued number to the
range [−1, 1]. Like the sigmoid neuron, its activations saturate, but unlike the sigmoid neuron its output is
zero-centered. Therefore, in practice the tanh non-linearity is always preferred to the sigmoid nonlinearity.
Also note that the tanh neuron is simply a scaled sigmoid neuron, in particular the following holds:
tanh(x) = 2σ(2x)− 1

9.3.3 ReLU

The Rectified Linear Unit has become very popular in the last few years. It computes the function
f(x) = max(0, x). In other words, the activation is simply thresholded at zero (see image above on the left).
There are several pros and cons to using the ReLUs:

(1) (+) It was found to greatly accelerate (e.g. a factor of 6 in Krizhevsky et al.
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf) the convergence of stochastic gradient descent
compared to the sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form.

(2) (+) Compared to tanh/sigmoid neurons that involve expensive operations (exponentials, etc.), the
ReLU can be implemented by simply thresholding a matrix of activations at zero.

(3) (-) Unfortunately, ReLU units can be fragile during training and can “die”. For example, a large
gradient flowing through a ReLU neuron could cause the weights to update in such a way that the
neuron will never activate on any datapoint again. If this happens, then the gradient flowing through
the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during
training since they can get knocked off the data manifold. For example, you may find that as much as

46

40% of your network can be “dead” (i.e. neurons that never activate across the entire training dataset)
if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an
issue.

9.3.4 Leaky ReLU

Leaky ReLUs are one attempt to fix the “dying ReLU” problem. Instead of the function being zero when x <
0, a leaky ReLU will instead have a small negative slope (of 0.01, or so). That is, the function computes
f(x) = 1(x < 0)(αx) + 1(x ≥ 0)(x) where α is a small constant. Some people report success with this form of
activation function, but the results are not always consistent. The slope in the negative region can also be
made into a parameter of each neuron, as seen in PReLU neurons, introduced in Delving Deep into Rectifiers,
by Kaiming He et al., 2015 https://arxiv.org/abs/1502.01852. However, the consistency of the benefit across
tasks is presently unclear.

9.3.5 Maxout

Other types of units have been proposed that do not have the functional form f(wTx+ b) where a
non-linearity is applied on the dot product between the weights and the data. One relatively popular choice
is the Maxout neuron (introduced recently by Goodfellow et al.
http://www-etud.iro.umontreal.ca/~goodfeli/maxout.html) that generalizes the ReLU and its leaky version.
The Maxout neuron computes the function max(wT1 x+ b1, w

T
2 x+ b2). Notice that both ReLU and Leaky

ReLU are a special case of this form (for example, for ReLU we have w1, b1 = 0). The Maxout neuron
therefore enjoys all the benefits of a ReLU unit (linear regime of operation, no saturation) and does not have
its drawbacks (dying ReLU). However, unlike the ReLU neurons it doubles the number of parameters for
every single neuron, leading to a high total number of parameters.

This concludes our discussion of the most common types of neurons and their activation functions. As a last
comment, it is very rare to mix and match different types of neurons in the same network, even though there
is no fundamental problem with doing so.

9.4 NN Architecture: a Layer-wise Organization

Neural Networks as neurons in graphs. Neural Networks are modeled as collections of neurons that are
connected in an acyclic graph. In other words, the outputs of some neurons can become inputs to other
neurons. Cycles are not allowed since that would imply an infinite loop in the forward pass of a network.
Instead of an amorphous blobs of connected neurons, Neural Network models are often organized into
distinct layers of neurons. For regular neural networks, the most common layer type is the fully-connected
layer in which neurons between two adjacent layers are fully pairwise connected, but neurons within a single
layer share no connections.

9.4.1 Naming Conventions

Notice that when we say N-layer neural network, we do not count the input layer. Therefore, a single-layer
neural network describes a network with no hidden layers (input directly mapped to output). In that sense,
you can sometimes hear people say that logistic regression or SVMs are simply a special case of single-layer
Neural Networks. You may also hear these networks interchangeably referred to as “Artificial Neural
Networks” (ANN) or “Multi-Layer Perceptrons” (MLP). Many people do not like the analogies between
Neural Networks and real brains and prefer to refer to neurons as units.

47

9.4.2 Output Layer

Unlike all layers in a Neural Network, the output layer neurons most commonly do not have an activation
function (or you can think of them as having a linear identity activation function). This is because the last
output layer is usually taken to represent the class scores (e.g. in classification), which are arbitrary
real-valued numbers, or some kind of real-valued target (e.g. in regression).

9.4.3 Sizing NN

The two metrics that people commonly use to measure the size of neural networks are the number of neurons,
or more commonly the number of parameters. Here we propose two examples: The first network (left) has
4 + 2 = 6 neurons (not counting the inputs), [3x4] + [4x2] = 20 weights and 4 + 2 = 6 biases, for a total of 26
learnable parameters. The second network (right) has 4 + 4 + 1 = 9 neurons,
[3x4] + [4x4] + [4x1] = 12 + 16 + 4 = 32 weights and 4 + 4 + 1 = 9 biases, for a total of 41 learnable parameters.

In general, modern Convolutional Networks contain on orders of 100 million parameters and are usually
made up of approximately 10-20 layers (hence deep learning). However, as we will see the number of effective
connections is significantly greater due to parameter sharing. More on this in the Convolutional Neural
Networks module.

48

10 CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous chapter: they
are made up of neurons that have learnable weights and biases. Each neuron receives some inputs, performs
a dot product and optionally follows it with a non-linearity. The whole network still expresses a single
differentiable score function: from the raw image pixels on one end to class scores at the other. And they still
have a loss function (e.g. SVM/Softmax) on the last (fully-connected) layer and all the tips/tricks we
developed for learning regular Neural Networks still apply.

So what does change? ConvNet architectures make the explicit assumption that the inputs are images, which
allows us to encode certain properties into the architecture. These then make the forward function more
efficient to implement and vastly reduce the amount of parameters in the network.

10.1 Architecture Overview

Recall: Regular Neural Nets. As we saw in the previous chapter, Neural Networks receive an input (a single
vector), and transform it through a series of hidden layers. Each hidden layer is made up of a set of neurons,
where each neuron is fully connected to all neurons in the previous layer, and where neurons in a single layer
function completely independently and do not share any connections. The last fully-connected layer is called
the “output layer” and in classification settings it represents the class scores.

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are only of size 32x32x3 (32 wide,
32 high, 3 color channels), so a single fully-connected neuron in a first hidden layer of a regular Neural
Network would have 32 ∗ 32 ∗ 3 = 3072 weights. This amount still seems manageable, but clearly this
fully-connected structure does not scale to larger images. For example, an image of more respectable size,
e.g. 200x200x3, would lead to neurons that have 200 ∗ 200 ∗ 3 = 120, 000 weights. Moreover, we would almost
certainly want to have several such neurons, so the parameters would add up quickly! Clearly, this full
connectivity is wasteful and the huge number of parameters would quickly lead to overfitting.

3D volumes of neurons. Convolutional Neural Networks take advantage of the fact that the input consists of
images and they constrain the architecture in a more sensible way. In particular, unlike a regular Neural
Network, the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note that
the word depth here refers to the third dimension of an activation volume, not to the depth of a full Neural
Network, which can refer to the total number of layers in a network.) For example, the input images in
CIFAR-10 are an input volume of activations, and the volume has dimensions 32× 32× 3 (width, height,
depth respectively). As we will soon see, the neurons in a layer will only be connected to a small region of
the layer before it, instead of all of the neurons in a fully-connected manner. Moreover, the final output layer
would for CIFAR-10 have dimensions 1x1x10, because by the end of the ConvNet architecture we will reduce
the full image into a single vector of class scores, arranged along the depth dimension.

10.2 Layers Used to Build CNN

As we described above, a simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms
one volume of activations to another through a differentiable function. We use three main types of layers to
build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as
seen in regular Neural Networks). We will stack these layers to form a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10
classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

49

10.2.1 Input

INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32,
and with three color channels R,G,B.

10.2.2 Conv

CONV layer will compute the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to in the input volume.
This may result in volume such as [32x32x12] if we decided to use 12 filters.

10.2.3 Relu

RELU layer will apply an elementwise activation function, such as the max(0, x) thresholding at zero. This
leaves the size of the volume unchanged ([32x32x12]).

10.2.4 Pool

POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in
volume such as [16x16x12].

10.2.5 FC

FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each
of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with
ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the
numbers in the previous volume.

In this way, ConvNets transform the original image layer by layer from the original pixel values to the final
class scores. Note that some layers contain parameters and other don’t. In particular, the CONV/FC layers
perform transformations that are a function of not only the activations in the input volume, but also of the
parameters (the weights and biases of the neurons). On the other hand, the RELU/POOL layers will
implement a fixed function. The parameters in the CONV/FC layers will be trained with gradient descent so
that the class scores that the ConvNet computes are consistent with the labels in the training set for each
image.

In summary: A ConvNet architecture is in the simplest case a list of Layers that transform the image volume
into an output volume (e.g. holding the class scores). There are a few distinct types of Layers
(e.g. CONV/FC/RELU/POOL are by far the most popular). Each Layer accepts an input 3D volume and
transforms it to an output 3D volume through a differentiable function. Each Layer may or may not have
parameters (e.g. CONV/FC do, RELU/POOL don’t. Each Layer may or may not have additional
hyperparameters (e.g. CONV/FC/POOL do, RELU doesn’t).

10.3 Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does most of the computational
heavy lifting.

50

10.3.1 Overview and intuition without brain stuff

Lets first discuss what the CONV layer computes without brain/neuron analogies. The CONV layer’s
parameters consist of a set of learnable filters. Every filter is small spatially (along width and height), but
extends through the full depth of the input volume. For example, a typical filter on a first layer of a ConvNet
might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because images have depth 3, the color channels).
During the forward pass, we slide (more precisely, convolve) each filter across the width and height of the
input volume and compute dot products between the entries of the filter and the input at any position. As
we slide the filter over the width and height of the input volume we will produce a 2-dimensional activation
map that gives the responses of that filter at every spatial position. Intuitively, the network will learn filters
that activate when they see some type of visual feature such as an edge of some orientation or a blotch of
some color on the first layer, or eventually entire honeycomb or wheel-like patterns on higher layers of the
network. Now, we will have an entire set of filters in each CONV layer (e.g. 12 filters), and each of them will
produce a separate 2-dimensional activation map. We will stack these activation maps along the depth
dimension and produce the output volume.

10.3.2 The brain view

If you’re a fan of the brain/neuron analogies, every entry in the 3D output volume can also be interpreted as
an output of a neuron that looks at only a small region in the input and shares parameters with all neurons
to the left and right spatially (since these numbers all result from applying the same filter). We now discuss
the details of the neuron connectivities, their arrangement in space, and their parameter sharing scheme.

10.3.3 Local Connectivity

When dealing with high-dimensional inputs such as images, as we saw above it is impractical to connect
neurons to all neurons in the previous volume. Instead, we will connect each neuron to only a local region of
the input volume. The spatial extent of this connectivity is a hyperparameter called the receptive field of the
neuron (equivalently this is the filter size). The extent of the connectivity along the depth axis is always
equal to the depth of the input volume. It is important to emphasize again this asymmetry in how we treat
the spatial dimensions (width and height) and the depth dimension: The connections are local in space
(along width and height), but always full along the entire depth of the input volume.

10.3.4 Spatial arrangement

We have explained the connectivity of each neuron in the Conv Layer to the input volume, but we haven’t
yet discussed how many neurons there are in the output volume or how they are arranged. Three
hyperparameters control the size of the output volume: the depth, stride and zero-padding. We discuss these
next:

1. First, the depth of the output volume is a hyperparameter: it corresponds to the number of filters we
would like to use, each learning to look for something different in the input. For example, if the first
Convolutional Layer takes as input the raw image, then different neurons along the depth dimension
may activate in presence of various oriented edges, or blobs of color. We will refer to a set of neurons
that are all looking at the same region of the input as a depth column (some people also prefer the
term fibre).

2. Second, we must specify the stride with which we slide the filter. When the stride is 1 then we move
the filters one pixel at a time. When the stride is 2 (or uncommonly 3 or more, though this is rare in
practice) then the filters jump 2 pixels at a time as we slide them around. This will produce smaller
output volumes spatially.

51

3. As we will soon see, sometimes it will be convenient to pad the input volume with zeros around the
border. The size of this zero-padding is a hyperparameter. The nice feature of zero padding is that it
will allow us to control the spatial size of the output volumes (most commonly as we’ll see soon we will
use it to exactly preserve the spatial size of the input volume so the input and output width and height
are the same).

We can compute the spatial size of the output volume as a function of the input volume size (W), the
receptive field size of the Conv Layer neurons (F), the stride with which they are applied (S), and the amount
of zero padding used (P) on the border. You can convince yourself that the correct formula for calculating
how many neurons “fit” is given by (W ???F + 2P)/S + 1(W ???F + 2P)/S + 1. For example for a 7x7 input
and a 3x3 filter with stride 1 and pad 0 we would get a 5x5 output. With stride 2 we would get a 3x3 output.

10.3.5 Constraints on strides

Note again that the spatial arrangement hyperparameters have mutual constraints. For example, when the
input has size W = 10, no zero-padding is used P = 0, and the filter size is F = 3, then it would be
impossible to use stride S = 2, since
(W ???F + 2P)/S + 1 = (10???3 + 0)/2 + 1 = 4.5(W ???F + 2P)/S + 1 = (10???3 + 0)/2 + 1 = 4.5, i.e. not an
integer, indicating that the neurons don’t “fit” neatly and symmetrically across the input. Therefore, this
setting of the hyperparameters is considered to be invalid, and a ConvNet library could throw an exception
or zero pad the rest to make it fit, or crop the input to make it fit, or something. As we will see in the
ConvNet architectures section, sizing the ConvNets appropriately so that all the dimensions “work out” can
be a real headache, which the use of zero-padding and some design guidelines will significantly alleviate.

10.3.6 Parameter Sharing

Parameter sharing scheme is used in Convolutional Layers to control the number of parameters. Using the
real-world example above, we see that there are 55 ∗ 55 ∗ 96 = 290, 400 neurons in the first Conv Layer, and
each has 11 ∗ 11 ∗ 3 = 363 weights and 1 bias. Together, this adds up to 290400 ∗ 364 = 105, 705, 600
parameters on the first layer of the ConvNet alone. Clearly, this number is very high.

It turns out that we can dramatically reduce the number of parameters by making one reasonable
assumption: That if one feature is useful to compute at some spatial position (x, y), then it should also be
useful to compute at a different position (x2, y2). In other words, denoting a single 2-dimensional slice of
depth as a depth slice (e.g. a volume of size [55x55x96] has 96 depth slices, each of size [55x55]), we are going
to constrain the neurons in each depth slice to use the same weights and bias. With this parameter sharing
scheme, the first Conv Layer in our example would now have only 96 unique set of weights (one for each
depth slice), for a total of 96 ∗ 11 ∗ 11 ∗ 3 = 34, 848 unique weights, or 34,944 parameters (+96 biases).
Alternatively, all 55*55 neurons in each depth slice will now be using the same parameters. In practice
during backpropagation, every neuron in the volume will compute the gradient for its weights, but these
gradients will be added up across each depth slice and only update a single set of weights per slice.

Notice that if all neurons in a single depth slice are using the same weight vector, then the forward pass of
the CONV layer can in each depth slice be computed as a convolution of the neuron’s weights with the input
volume (Hence the name: Convolutional Layer). This is why it is common to refer to the sets of weights as a
filter (or a kernel), that is convolved with the input.

Note that sometimes the parameter sharing assumption may not make sense. This is especially the case
when the input images to a ConvNet have some specific centered structure, where we should expect, for
example, that completely different features should be learned on one side of the image than another. One
practical example is when the input are faces that have been centered in the image. You might expect that
different eye-specific or hair-specific features could (and should) be learned in different spatial locations. In
that case it is common to relax the parameter sharing scheme, and instead simply call the layer a
Locally-Connected Layer.

52

10.4 Implementation as Matrix Multiplication

Note that the convolution operation essentially performs dot products between the filters and local regions of
the input. A common implementation pattern of the CONV layer is to take advantage of this fact and
formulate the forward pass of a convolutional layer as one big matrix multiply as follows:

1. The local regions in the input image are stretched out into columns in an operation commonly called
im2col. For example, if the input is [227x227x3] and it is to be convolved with 11x11x3 filters at stride
4, then we would take [11x11x3] blocks of pixels in the input and stretch each block into a column
vector of size 11 ∗ 11 ∗ 3 = 363. Iterating this process in the input at stride of 4 gives (227-11)/4+1 =
55 locations along both width and height, leading to an output matrix Xcol of im2col of size [363 x
3025], where every column is a stretched out receptive field and there are 55 ∗ 55 = 3025 of them in
total. Note that since the receptive fields overlap, every number in the input volume may be duplicated
in multiple distinct columns.

2. The weights of the CONV layer are similarly stretched out into rows. For example, if there are 96
filters of size [11x11x3] this would give a matrix Wrow of size [96 x 363].

3. The result of a convolution is now equivalent to performing one large matrix multiply
np.dot(Wrow, Xcol), which evaluates the dot product between every filter and every receptive field
location. In our example, the output of this operation would be [96 x 3025], giving the output of the
dot product of each filter at each location.

4. The result must finally be reshaped back to its proper output dimension [55x55x96].

53

11 DIMENSION REDUCTION

11.1 Bias-Variance Trade-off

As discussed earlier, there is a bias-variance trade-off. To do analyze this section, let us start with coefficients
estimation. As usual, assume a model

y = f(z) + ε, ε ∼ (0, σ2)

In regression, our goal is to come up with some good regression function f̂(z) = zT β̂. From Gausssian,
Gauss-Markov, or machine learning techniques, we have different approaches for β̂ls. The question remains:
can we do better?

Suppose we have an estimator f̂(z) = zT β̂. To see if f̂(z) = zT β̂ is a good candidate, we can ask ourselves
two questions: (1) Is β̂ close to the true β?, and (2) Will f̂(z) fit future observations well? To answer this,
we consider mean squared error of our estimate β̂:

MSE(β̂) = E[||β̂ − β||2] = E[(β̂ − β)T (β̂ − β)]

To measure new measurements y′i at the same z′i, we have

(z1, y
′
1), (z2, y

′
2), ..., (zn, y′n)

and if our estimate (or fit) is a good model this estimate should also be close to new target y′j , which is the
notion of prediction error. From decomposition, we have

Error(z0) = σ2
ε + Bias2(f̂(z0)) + Var(f̂(z0))

Such a decomposition is known as the bias-variance tradeoff. As model becomes more complex (i.e. more
terms included), local structure/curvature can be picked up. However, coefficient estiamtes suffer from high
variance as more terms are included in the model. Hence, introducing a little bias in our estimate for β might
lead to a substantial decrease in variance, and hence to a substantial decrease in prediction error.

11.2 PCR

Principal components analysis (PCA) is a popular approach for deriving a low-dimensional set of features
from a large set of variables. PCA is a technique for reducing the dimension of a n× p data matrix X. The
first principal component direction of the data is that along which the observations vary the most. There is
also another interpretation for PCA: the first principal component vector defines the line that is as close as
possible to the data.

11.2.1 The Principal Components Regression Approach

The principal components regression (PCR) approach involves constructing the first M principal components,
Z1, ..., Zm, and then using these components as the predictors in a linear regression model that is fit using
least squares. The key idea is that often a small number of principal components suffice to explain most of
the variability in the data, as well as the relationship with the response. In other words, we assume that the
directions in which X1, ..., Xp show the most variation are the directions that are associated with Y .

54

11.3 Step Variable Selection

A simple technique for selecting the most important variables is stepwise variable selection. The stepwise
algorithm works by repeatedly adding or removing variables from the model, trying to “improve” the model
at each step. When the algorithm can no longer improve the model by adding or subtracting variables, it
stops and returns the new (and usually smaller) model.

Note that “improvement” does not just mean reducing the residual sum of squares (RSS) for the fitted model.
Adding an additional variable to a model will not increase the RSS (see a statistics book for an explanation
of why), but it does increase model complexity. Typically, AIC (Akaike’s information criterion) is used to
measure the value of each additional variable. The AIC is defined as AIC =???2??? log(L) + k???cdf , where
L is the likelihood and edf is the equivalent degrees of freedom.

11.4 James-Stein

For N ≥ 3, the James-Stein estimator everywhere dominates the MLE µ̂(0) in terms of expected total
squared error; that is

Eµ{||µ̂(JS) − µ||2} < Eµ{||µ̂(MLE) − µ}

for every choice of µ.

A quick proof of the theorem begins with the identity

(µ̂i − µi)2 = (zi − µ̂i)2 − (zi − µi)2 + 2(µ̂i − µi)(zi − µi).

Summing the above equation over i = 1, 2, ..., N and taking expectations gives

Eµ{||µ̂− µ||2} = E{||z − µ̂||2} −N + 2
N∑
i=1

covµ(µ̂i, zi),

where covµ indicates covariance under z ∼ NN (µ, I). Integration by parts involving the multivariate normal
density function fµ(z) = (2π)−N/2 exp{− 1

2
∑

(zi − µi)2}shows that

covµ(µ̂i, zi) = Eµ

{
∂µ̂i
∂zi

}
.

Applying the simplified equation above to µ̂(JS) = (1− N−2
S)z gives

Eµ{||µ̂(JS) − µ||2} = N − Eµ
{

(N − 2)2

S

}
with S =

∑
z2
i as before. The last term is positive if N exceeds 2, proving the theorem.

11.5 Ridge

11.5.1 Motivation

Stepwise variable selection simply fits a model using lm() function in R, but limits the number of variables in
the model. In contrast, ridge regression places constraints on the size of the coefficients and fits a model using
different computations. Ridge regression can be used to mitigate problems when there are several highly

55

correlated variables in the underlying data. This condition (called multicollinearity) causes high variance in
the results. Reducing the number, or impact, of regressors in the data can help reduce these problems.

We described how ordinary linear regression finds the coefficients that minimize the residual sum of squares.
Ridge regression does something similar. Ridge regression attempts to minimize the sum of squared residuals
plus a penalty for the coefficient sizes. The penalty is constant λ times the sum of squared coefficients.
Specifically, ridge regression tries to minimize the following quantity:

RSSridge(c) =
N∑
i=1

(yi − ŷi)2 + λ

m∑
j=1

c2i

11.5.2 Ridge Approach

How does it work? Consider estimates for coefficients. If they are unconstrained, they can explode and are
susceptible to high variance. To control variance, we might regularize the coefficients (how large they grow).
We can impose ridge constraint:

min
n∑
i=1

(yi − βT zi)2 such that
p∑
j=1

β2
j ≤ t

⇔ min(y − Zβ)T (y − Zβ) such that
p∑
j=1

β2
j ≤ t

assuming that z is standardized with (mean 0 and unit variance) and y is centered. we can write the ridge
constraint as the following penalized residual sum of squares (PRSS):

PRSS(β)l2 =
∑n
i=1(yi − zTi β)2 + λ

∑p
j=1 β

2
j

= (y − Zβ)T (y − Zβ) + λ||β||22
and the solution may have smaller average prediction error than least square estiamtes. Note that PRSS(β)ls
is convex, and has a unique solution. Taking derivatives, we obtain

∂PRSS(β)l2
∂β

= −2ZT (y − Zβ) + 2λβ

and the solution to PRSS(β̂)l2 is now seen to be

β̂ridge
λ = (ZTZ + λIp)−1ZT y

Remember that in this case Z is standardized and y is centered. The solution is then indexed by the tuning
parameter λ. For each λ, we have a solution. Hence, the λ’s trace out a path of solutions (see Exercise 1.
Other for graphical illustration). As a summary, λ is the shrinkage parameter. It controls the size of the
coefficients and the amount of regularization. As λ tends to 0, we obtain the least squares solutions. Whilst
λ tends to ∞, we have β̂ridge

λ=∞ = 0, which is an intercept-only model.

56

11.5.3 Proofs

What is left is tuning of the parameter λ. This is where ridge traces being introduced. Plot the components
of β̂ridge

λ against λ. Choose λ for which the coefficients are not rapidly changing and have “sensible signs”.

First we prove that β̂ridge
λ is biased. Let R = ZTZ. Then consider

β̂ridge
λ = (ZTZ + λIp)−1ZT y

= (R+ λIp)−1R(R−1ZT y)
= [R(Ip + λ−1)]−1R[(ZTZ)−1ZT y]
= (Ip + λR−1)−1R−1R

= (Ip + λR−1)β̂ls
⇒

E(β̂ridge
λ) = E{(Ip + λR−1)β̂ls}

= (Ip + λR−1)β
λ6=0
6= β

with this biased estimator, we rewrite l2 PRSS as

PRSS(β)l2 =
∑n
i=1(yi − zTi β)2 + λ

∑p
j=1 β

2
j

=
∑n
i=1(yi − zTi β)2 +

∑p
j=1(0−

√
λβj)2

The l2 criterion is the RSS for the augmented dataset:

Zλ =



z1,1 z1,2 z1,3 . . . z1,p
...

...
...

...
...

zn,1 zn,2 zn,3 . . . zn,p√
λ 0 0 . . . 0

0
√
λ 0 . . . 0

0 0
√
λ

. . . 0

0 0 0
. . . 0

0 0 0
. . .

√
λ


; yλ =



y1
...
yn
0
0
0
...
0


and we can solve for

Zλ =
(

Z√
λIp

)
; yλ =

(
y
0

)
Thus, the “least squares” solution for the augmented data is

(ZTλ Zλ)−1ZTλ yλ =
(
(ZT ,

√
λIp)(

(
Z√
λIp

)
)
)−1(ZT ,

√
λIp)(

(
y
0

)
)

= (ZTZ + λIp)−1ZT y

�

57

11.5.4 Bayesian Framework

Suppose we imposed a multivariate Gaussian prior for β:

β ∼ N (0, 1
2pIp)

Then the posterior mean (and also posterior mode) of β is

βridge
λ = (ZTZ + λIp)−1ZT y

The inverting of ZTZ can be computationally expensive. Instead, the singular value decomposition is
utilized; that is,

Z = UDV T ,

where U = (u1, u2, ..., up) is an n× p orthogonal matrix, D = diag(d1, d2, ...,≥ dp) is a p× p diagonal matrix
consisting of the singular values d1 ≥ d2 ≥ . . . dp ≥ 0, and V T = (vT1 , vT2 , ..., vTp) is a p× p matrix orthogonal
matrix.

A consequence is that

ŷridge = Zβ̂ridge
λ

=
∑p
j=1

(
uj

d2
j

d2
j
+λu

T
j

)
y

Ridge regression has a relationship with principal components analysis (PCA). The fact is that the derived
variable γj = Zvj = ujdj is the jth principal component (PC) of Z. Hence, ridge regression projects y onto
these components with large dj . Ridge regression shrinks the coefficients of low-variance components.

11.6 Lasso

Another technique for reducing the size of the coefficients (and thus reducing their impact on the final model)
is the lasso. Like ridge regression, lasso regression puts a penalty on the size of the coefficients. However, the
lasso algorithm uses a different penalty: instead of a sum of squared coefficients, the lasso sums the absolute
value of the coefficients. (In math terms, ridge uses L2-norms, while lasso uses L1-norms.) Specifically, the
lasso algorithm tries to minimize the following value:

RSSlasso(c) =
N∑
i=1

(yi − ŷi)2 + λ

m∑
j=1
|ci|

11.6.1 A Leading Example

Consider a linear regression, in which we observe N observations of an outcome variable yi and p associated
predictor variables (or features) xi = (xi1, ..., xip)T . The goal is to predict the outcome from the predictors,
both for actual prediction with future data and also to discover which predictors play an important role. A
linear regression model assumes that

yi = β0 +
p∑
j=1

xijβj + ei,

58

where β0 and β = (β1, β2, ..., βp) are unknown parameters and ei is an error term. The method of least
squares provides estimates of the parameters by minimization of the least-squares objective function

min
β0,β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2.

Typically all of the least-squares estimates from the above objective equation will be nonzero, which will
make interpretation of the final model challenging if p is large.

Thus, there is a need to constrain or regularize the estimation process. In lasso or l1-regularized regression,
we estimate the parameters by solving the problem

min
β0,β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2 subject to ||β||1 ≤ t

where ||β||1 =
∑p
j=1 |βj | is the l1 norm of β, and t is a user-specified parameter. We can think of t as a

budget on the total l1 norm of the parameter vector, and the lasso finds the best fit within this budge.

Why l1 norm? It turns out that the l1 norm is special. If the budget t is small enough, the lasso yields sparse
solution vectors, having only some coordinates that are nonzero. This does not occur for pq norms with
q > 1; for 1 < 1, the solutions are sparse but the problem is not convex and this makes the minimization very
challenging computationally. The value q = 1 is the smallest value that yields a convex problem.

11.6.2 Lasso Estimator

Given a collection of N predictor-response pairs {(xi, yi)}Nt=1, the lasso finds the solution (β̂0, β̂) to the
optimization problem

min
β0,β

{
1

2N

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)2
}

subject to
p∑
j=1
|βj | ≤ t.

The constraint
∑p
j=1 |βj | ≤ t can be written more compactly as the l1-norm constraint ||β||1 ≤ t.

Furthermore, the above optimization equation is often represented using matrix vector notation. Let
y = (y1, ..., yN) denote the N -vector of responses, and X be an N × p matrix with xi ∈ Rp in the ith row,
then the optimization problem can be re-expressed as

min
β0,β

{
1

2N ||y− β01−Xβ||22
}

subject to ||β||1 ≤ t,

where 1 is the vector of N ones, and || · ||2 denotes the usual Euclidean norm on vectors. The bound t is a
kind of “budgeet”: it limist the sum of the absolute vavlues of the parameter estimates. Since a shrunken
parameter estimate corresponds to a more heavily-constrained model, this budge limits how well we can fit
the data.

59

11.6.3 Compute Lasso Solution

First of all, the lasso problem is a convex program, specifically a quadratic program (QP) with a convex
constraint. For convenience, we write the criterion in Lagrangian form:

min
β∈Rp

{
1

2N

N∑
i=1

(yi −
p∑
j=1

xijβj)2 + λ

p∑
j=1
|βj |
}
.

First, let us consider a single predictor setting, based on samples {(zi, yi)}Ni=1 (for convenience we have given
the name zi to this single xi1). The problem then is to solve

min
β

{
1

2N

N∑
i=1

(yi − ziβ)2 + λ|β|
}

The standard approach is to use gradient descent with respect to β and set it to zero. However, the problem
is that |β| does not have a derivative at β = 0. However, direct inspection of the above objective function
gives us

β̂ =


1
N < z, y > −λ if 1

N < z, y >> λ,
0 if 1

N | < z, y > | ≤ λ,
1
N < z, y > +λ if 1

N < z, y >< −λ

which we can write succinctly as

β̂ = Sλ(1
N

< z, y >)

with soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

translates its argument x toward zero by the amount λ and sets it to zero if |x| ≤ λ.

Using the intuition from the univariate case, we can now develop a simple coordinatewise scheme for slving
the predictors in some fixed (but arbitrary) order (say j = 1, 2, ..., p), where at the jth step, we update the
coefficient βj by minimizing the objective function in this coordinate while holding fixed all other coefficients
{β̂k, k 6= j} at their current values. Hence, we write the objective as

1
2N

N∑
i=1

(yi −
∑
k 6=j

xikβk − xijβj)2 + λ
∑
k 6=j
|βk|+ λ|βj |,

the solution for each βj can be expressed r(j)
i = yi −

∑
k 6=j xikβ̂k, which removes from the outcome the

current fit from all but the jth predictor. The jth coefficient, in terms of partial residual, is updated as

β̂j = Sλ(1
N

< xj , r
(j) >),

where ri = yi −
∑p
j=1 xij β̂j are the full residuals. The overall algorithm operates by applying this

soft-thresholding update repeatedly in a cyclical manner, updating the coordinates of β̂ (and hence the
residual vectors) along the way.

60

11.7 Influence Measure: I Score

11.7.1 Background and Motivation

Professor Shaw-Hwa Lo proposed approaching prediction from a framework grounded in the theoretical
correct prediction rate of a variable set as a parameter of interest. This framework allows us to define a
measure of predictivity that enables assessing variable sets for, preferably high, predictivity. They first define
the prediction rate for a variable set and consider, and ultimately reject, the naive estimator, a statistic
based on the observed sample data, due to its inflated bias for moderate sample size and its sensitivity to
noisy useless variables. We demonstrate that the I-score of the PR method of VS yields a relatively unbiased
estimate of a parameter that is not sensitive to noisy variables and is a lower bound to the parameter of
interest. Thus, the PR method using the II-score provides an effective approach to selecting highly predictive
variables. We offer simulations and an application of the II-score on real data to demonstrate the statistic’s
predictive performance on sample data. We conjecture that using the partition retention and II-score can aid
in finding variable sets with promising prediction rates; however, further research in the avenue of
sample-based measures of predictivity is much desired.

The types of approaches and tools developed for feature selection are both diverse and varying in degrees of
complexity. However, there is general agreement that three broad categories of feature selection methods
exist: filter, wrapper, and embedded methods. Filter approaches tend to select variables through ranking
them by various measures (correlation coefficients, entropy, information gains, chi-square, etc.). Wrapper
methods use “black box” learning machines to ascertain the predictivity of groups of variables; because
wrapper methods often involve retraining prediction models for different variable sets considered, they can be
computationally intensive. Embedded techniques search for optimal sets of variables via a built-in classifier
construction. A popular example of an embedded approach is the LASSO method for constructing a linear
model, which penalizes the regression coefficients, shrinking many to zero. Often cross-validation is used to
evaluate the prediction rates.

Often, though not always, the goal of these approaches is statistical inference. When this is the case, the
researcher might be interested in understanding the mechanism relating the explanatory variables with a
response. Although inference is clearly important, prediction is an important objective as well. In this case,
the goal of these VS approaches is in inferring the membership of variables in the “important set.” Various
numerical criteria have been proposed to identify such variables [e.g., Akaike information criterion (AIC) and
Bayesian information criterion (BIC), among others, which are associated with predictive performance under
model assumptions made for the derivation of these criteria. However, these criteria were not designed to
specifically correlate with predictivity. Indeed, we are unaware of a measure that directly attempts to
evaluate a variable set’s theoretical level of predictivity

An ideal measure for predictivity (or a good VSA measure) reflects a variable set’s predictivity. In doing so,
it would also guide VSA through screening out noisy variables and should correlate well with the
out-of-sample correct prediction rate. We present a potential candidate measure, the II-score, for evaluating
the predictivity of a given variable set in this section.

11.7.2 Theoretical Framework

11.7.2.1 Theorem

Under the assumptions that nd
n → λ, a value strictly between 0 and 1, and π(d) = π(u) = 1/2, then

lim
n→∞

s2
nIΠX

n

P= λ2(1− λ)2
∑
j∈ΠX

[P (j|d)− P (j|u)]2

where P= indicates that the left-hand side converges in probability to the right-hand side and s2
n = ndnu/n

2.

61

Consider a set of n observations of disease phenotype Y (dichotomous or continuous) and a large number S
of SNPs, X1, X2, . . . , XS . Randomly select a small group, m, of the SNPs. Following the same notation as
in previous sections, we call this small group X = {Xk, k = 1, ...,m}. Recall that Xk takes values 0, 1, and 2
(corresponding to three genotypes for a SNP locus: AA, A/B, and B/B). There are then m1 = 3m possible
values for X’s. The n observations are partitioned into m1 cells according to the values of the m SNPs (Xk’s
in X), with nj observations in the jth cell. We refer to this partition as ΠX. The proposed I-score (denoted
by IΠX) is designed to place greater weight on cells that hold more observations:

IΠX =
m1∑
j=1
· (Ȳj − Ȳ)2

s2
n/nj

=
∑m1
j=1 n

2
j (Ȳj − Ȳ)2∑n

i=1(Yi − Ȳ)2

where s2
n = 1

n

∑n
i=1(Yi − Ȳ)2. We note that the I-score is designed to capture the discrepancy between the

conditional means of Y on {X1, X2, ..., Xm} and the mean of Y .

In this section, we consider the special problem of a case-control experiment where there are nd cases and nU
controls and the variable Y is 1 for a case and 0 for a control. Then s2

n = (ndnu)/n2 where n = nd + nu.

We prove that the I-socre approaches a constant multiple of θI asymptotically.

Under the null hypothesis of no association between X = {Xk, k = 1, ...,m} and Y , IΠX can be
asymptotically expressed as

∑m1
j=1 λjχ

2
j (a weighted average), where λj is between 0 and 1 and

∑m1
j=1 λj is

equal to 1−
∑m1
j=1 p

2
j , where pj is the cell j’s probability. {χ2

j} are m1 chi-squares, each with degree of
freedom, df = 1.

Moreover, the above formulation and properties of IΠX apply to the specified Y model with case-control
study (where Y = 1 designates case and Y = 0 designates control). More specifically, in a case-control study
with nd cases and nu controls (letting n = nd + nu), ns2

nIΠX can be expressed as the following:

ns2
nIΠX =

∑
j∈ΠX

n2
j (Ȳj − Ȳ)2

=
∑
j∈ΠX

(nmd,j + nmu,j)2
(

nmd,j
nm
d,j

+nm
d,j
− nd

nd+nu

)

=
(

ndnu
nd+nu

)∑
j∈ΠX

(
nmd,j
nd
− nmu,j

nu

)2

where nmd,j and nmu,j denote the numbers of cases and controls falling in jth cell, and ΠX stands for the
partition formed by m variables in X. Since the PR method seeks the partition that yields larger I-scores,
one can decompose the following:

ns2
nIΠX =

∑
j∈ΠX

n2
j (Ȳj − Ȳ)2 = An +Bn + Cn

where An =
∑
j∈ΠX

n2
j (Ȳj − µj)2, Bn =

∑
j∈ΠX

n2
j (Ȳ − µj)2, and Cn =

∑
j∈ΠX

−2n2
j (Ȳj − µj)(Ȳ − µj).

Here, µj and µ are the local and grand means of Y , that is, E(Ȳj) = µj ; Ȳ = µ = nd
nd+nu for fixed n. It is

easy to seethat both terms An and Cn, when divided by n2 convere to 0 in probability as n→∞. We turn
to the last term, Bn. Note that

lim
n

Bn
n2

P= lim
n

∑
j∈ΠX

(
n2
j

n2

)
(µj − µ)2

In a case-control study, we have

62

µj = ndP (j|d)
ndP (j|d) + nuP (j|u)

and

µ = nd
nd + nu

Because for every j, njn converges (in probability) to pj = λP (j|d) + (1− λ)P (j|u) as n→∞, if lim
n

nd
n = λ,

a fixed a constant between 0 and 1, it follows that

Bn
n2 =

∑
j∈ΠX

(
n2
j

n2

)
(µj − µ)2

P→
∑
j∈ΠX

p2
j

(
λP (j|d)

λP (j|d)+(1−λ)P (j|u)

)2
as n→∞

=
∑
j∈ΠX

{λP (j|d)− λ[λP (j|d) + (1− λ)P (j|u)]}2

=
∑
j∈ΠX

{λ(1− λ)P (j|d)− [λ(1− λ)P (j|u)]}2

= λ2(1− λ)2∑
j∈ΠX

[P (j|d)− P (j|u)]2

Thus, neglecting the constant term in the above equation, the I-score can guide a search for X partitions,
which will lead to finding larger values of the summation term

∑
j∈ΠX

[P (j|d)− P (j|u)]2.

63

12 Exercise 1

Consider the famous example of handwritten digits recognition. The exercise we can write functions of
visualization of
Setup dataset:
zip<-read.table("zip.train", header=FALSE, sep=" ")
zip<-zip[, -258]
x_train<-as.matrix(zip[,2:257])
y_train<-as.matrix(zip[,1])
#write.csv(zip, file="zip_train.csv", row.names = FALSE, col.names = FALSE)

test<-read.table("ziptest.txt", header = FALSE, sep=" ")
x_test<-as.matrix(test[, 2:257])
y_test<-as.matrix(test[, 1])
y_test<-as.factor(y_test)

zip.3<-read.table("train.3.txt", header=FALSE, sep=",")
zip.5<-read.table("train.5.txt", header=FALSE, sep=",")
zip.3<-as.matrix(zip.3)
n.3<-length(zip.3[,1])
zip.5<-as.matrix(zip.5)
n.5<-length(zip.5[,1])
data<-rbind(zip.3, zip.5)

Write a function of data visualization, input is a vector of length 256
output.image<-function(vector) {

digit<-matrix(vector, nrow=16, ncol=16)
index= seq(from=16, to =1, by=-1)
sym_digit = digit[,index]
image(sym_digit, col= gray((8:0)/8), axes=FALSE)
#image(digit, col= gray((8:0)/8), axes=FALSE)

}

Ex:
output.image(zip.5[3,])

64

Comment: The output of the function, output.image(), will give us
a 16x16 pixel image. In this case, the data set zip.5 is examples
of observations of digit 5.

Visualization of data
par(mfrow=c(10,10),mai=c(0.1,0.1,0.1,0.1))
for(i in 1:100) {

output.image(zip.5[i,])
#output.image(zip.3[i,])

}

65

Comment: This is a collection of visualization of
the first 100 observations of digit 5 from the same datset
as the above.

Center the data
scaled.3<-scale(zip.3,center=TRUE, scale=FALSE)
scaled.data<-scale(data, center=TRUE, scale=FALSE)
x_train_scaled<-scale(x_train, center=TRUE, scale = FALSE)

pca<-svd(scaled.3)
par(mfrow=c(4,4), mai=c(0.1,0.1, 0.1, 0.1))
for(j in 1:16) {

output.image(pca$v[,j])
}

66

Comment: for different dimensions we observe the input image
is transformed into different images as presented in the graph.

Principal Component Analysis:
pca<-svd(scaled.data)
pca<-svd(scaled.3)
pca<-svd(x_train_scaled)

Projections on the subspace spanned by the first two principle components
par(mfrow=c(1,1), mai=c(0.6, 0.6, 0.6, 0.6))
plot(pca$u[,1], pca$u[, 2], pch=16,

xlab="First Principle Component",
ylab="Second Principle Component")

67

−0.02 −0.01 0.00 0.01 0.02 0.03

−
0.

03
−

0.
01

0.
01

0.
02

0.
03

S
ec

on
d

P
rin

ci
pl

e
C

om
po

ne
nt

plot(pca$u[1:n.3, 1], pca$u[1:n.3, 2], pch="3", col="red",
xlim=c(-0.07, 0.07), ylim=c(-0.07, 0.07),
xlab="First Principle Component",
ylab="Second Principle Component")

points(pca$u[(n.3+1):(n.3+n.5), 1], pca$u[(n.3+1):(n.3+n.5), 2], pch="5", col="blue")

68

3

3
3

3

3
33

3
3

3

3
3

33

3
3
3

3

3

3
3

3

3

3

3

3
3

33

3

3

3

3
3

3

3

3
3

33

3

3

3
3

3

3

3
3

3 33

3
3

3
3

33
3

3

3

3

3
33

3

33
3

3

3

3

3
33 3

333
3

3
3

3

3

3
3

33 3 3

3

3

3
3

3
3

3

3

3
3

3

3

3

3

3
3

3

3

3

3

3

3

33

3
3

3

3

33

3

3

3
3

3

3

3

3
3

3

3
3

3

3
3

3

33

3

3

3
3

3
33

3
3

3
333

3

3

3
3

3

3

3 33
3

3
3

3

3

3

3

3
3

3 333
3

3 3

3
3

3

3

3

3
33

3

3
3

3
3

3

3

3

3 3

3
3

3

3

3

33

3

3

333

3

3
333

333

3

3

3

33

3

3

3

3

3

3 3

33

3

3

33

3

3

33
3

3

3
3

3

3
3

33

3

33

3

3

3

33

3

3

3
3

3 333

3

3
3
3

3

3

3

3

33

3 333

3
3

3

3

3
3

3

3 3

3
3

3

3

3 33

3 3

3

3
33

3

3

3
3

33

3
3

3

3

3

3

3
3 33

3
3 3

3

3

33

3

3
3

3
3

3

3

3

3
33

3

3

3333

3

3

3

3 3

3
33

3
3

3

3 33
3

3

3

3

3 3

3

3

3

33

3
3 3

3

3
3
333

3

3

33
3

333

3

33

3

33

3

3

3

33
3

33
3

3 33
333

3

33 3

3 3
3

3

3
3

3

3

33 3 3

3

3
3 3 3

3
3

3 3

3

3

3

33

3
3

3 3

3

3 33

3 3

3

33

3

3
333

3

3

3

3

3

3

33
3

3
3 3

3 3
3

33

33
3

3

33
3

3
3

3

3

3

3 3

3

3

3

33
3

3

3
3

3
33

3
3

3
33 33

3
3

3

33 33

3

33

3
3

3

3

3
3

3

3

3

3
33

3

3

33
3

3

3
3

3

33

3

3

3

3
3

3
3

3 3

33

3

3

3
3

3
3

3 333
3

33

3

3
3

3 3

3
3

3

3
3

3

3
3

3

3
3
33

3

3

3 33

3

3 3
3

3

33
3

3

3
3

3 3
3

3
3

3

3

3
3

3
3

3
3

3

3 3

3
33

3
3 3

33

3
3

3

3
3

3
3

3
33

3

3 3
3

3
33

3

3
3

33
3

3

3

33
3

3

33
333

3

3

3
3

3

3

3 3

3

3
3

3

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−
0.

06
−

0.
02

0.
02

0.
06

S
ec

on
d

P
rin

ci
pl

e
C

om
po

ne
nt

5
5
5

5

55
55

5 5
55

5

5

5
5

5

55

5
5

5

5

5

55 5

5

5 5
5

5

5
5

5

555

5

5

5555
55

55 5

5 5

55 55

5

5

5 5
55

5 5

5

5

5

55

5

55

5 5

55 555
55

55

5

5
5

5

5
5

5
5

55

55

5
5 55
5

5 55
5 55

5
5

55 5

5

5

5

5

5
5

55

5

5
5

5

5

5

5

5

5
5

5

55
55

5

5

5

5

5

5
5

5

5

5

5

5
5

5

5

5
5

5

5

5

5
5

5

5

5 5
5

5

5

5

5

5 5
5

5
5 5

5

55

5

5

5
55

5

5

5

55

5

5

55 5

5

5
5 5

5

5
5

5
55
5 5

5

5

5

5
5

5

5
5

5

5

5

5
5

5

5

5

555

5
5 5

555
5

5
5

5
5 5

5

5 5 55

5

5 5

55

5

5
5

5

5

5
5 5

5
55

5

5

5
5

5

55

5

5 5
5 55

5

5
5

5 5 5

5 55
5

5
5

55

5
55

5

5

5
5

5
5 5

5 5 55
55

5

5
5

5

5
5

5

5
5

5

5

5

55
55

5

5

5

5

5

5

5
5

5
5 5

5

5
55
5

5 5
55

5
5

5

55
5

55

5

5

5

5

5

5 5
5

5

5

5

5

5

5
5
5

5

5
5 5

55

5
5

5
5

5

5

555

5

55
5

5

5
55 5
55

5
5

55

5
5

5

5 5

5

5

5

5

5

5

5
5

5

5

5 5

5
5

5

5
5 5

5
5

55 5
5

5
5

55

5 5
5

5

5
5

5

5

5

5

5
5

5

55

5

5
5

55
5

5

5

5

55

55
55

5

5
5

5

5

5

5

55

5
5

5

5

5

5

5

5
5

5

5

5
5

5

5
5 5

5

5

5

5
5

5

5

5

5

5
5

5 5

5
5

5
5

5
5

5

5

5
55

5

5
5

5
55

5

5

5

5

5
5

55

5
5

5
5

5

5

5

5

5

5

55

5
55

5 5
5

5

5

5
5

5

5
55

5 5
5

5

5

5

5

5

5
5

5

5

55

5

5

5

5

Scree plot
plot(seq(from=1,to=256, by=1), (pca$d)^2/sum((pca$d)^2),

xlab="Priciple componnets",
ylab="Proportion of variance explained",
pch=16)

69

0 50 100 150 200 250

0.
00

0.
05

0.
10

0.
15

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Visualization of principel components
par(mfrow=c(4,4),mai=c(0.1,0.1,0.1,0.1))
for(j in 1:16) {

output.image(pca$v[,j])
}

70

12.1 K-Means

set.seed(2)
x <- matrix(rnorm(50*2), ncol = 2)
x[1:25, 1] <- x[1:25, 1]+3
x[1:25, 2] <- x[1:25, 2]-4
km.out <- kmeans(x,2,nstart = 20)
km.out$cluster

[1] 2 1 1 1 1 1 1 1 1 1 1
[36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
plot(x, col=(km.out$cluster + 1))

71

−2 0 2 4

−
6

−
4

−
2

0
2

x[,1]

x[
,2

]

Comment: this will give you a plot.

set.seed(3)
km.out = kmeans(x,3,nstart=2)
km.out$tot.withinss

[1] 97.97927
km.out = kmeans(x,3,nstart=2000)
km.out$tot.withinss

[1] 97.97927

12.2 Linear Regression

The linear models always take the form y = β0 + β1x1 + · · ·+ βpxp + ε. We can maximize betap by
minimizing RSS. We can start with a linear model. We adjust or we can make predictions. For predictions
made, we can select a model that we beleive ideal or we can make changes to this model.
Remember to install packages first:
library(MASS)
library(ISLR)

Linear Model
lm.fit <- lm(medv ~ lstat, data=Boston)
summary(lm.fit)

72

##
Call:
lm(formula = medv ~ lstat, data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-15.168 -3.990 -1.318 2.034 24.500
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
Comment: we can summarize results by summary().
We read the results and observe estimate, std. error, and
t-value. We can check whether each predictor is significant
or not. We can also check p-value. In this case,
both parameters are important and we need to retain them.

Multi-various Linear Model
lm.fit <- lm(medv ~ lstat + age, data = Boston)
summary(lm.fit)

##
Call:
lm(formula = medv ~ lstat + age, data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-15.981 -3.978 -1.283 1.968 23.158
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.22276 0.73085 45.458 < 2e-16 ***
lstat -1.03207 0.04819 -21.416 < 2e-16 ***
age 0.03454 0.01223 2.826 0.00491 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.173 on 503 degrees of freedom
Multiple R-squared: 0.5513, Adjusted R-squared: 0.5495
F-statistic: 309 on 2 and 503 DF, p-value: < 2.2e-16
lm.fit <- lm(medv ~ ., data = Boston)
summary(lm.fit)

##
Call:
lm(formula = medv ~ ., data = Boston)

73

##
Residuals:
Min 1Q Median 3Q Max
-15.595 -2.730 -0.518 1.777 26.199
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
crim -1.080e-01 3.286e-02 -3.287 0.001087 **
zn 4.642e-02 1.373e-02 3.382 0.000778 ***
indus 2.056e-02 6.150e-02 0.334 0.738288
chas 2.687e+00 8.616e-01 3.118 0.001925 **
nox -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
rm 3.810e+00 4.179e-01 9.116 < 2e-16 ***
age 6.922e-04 1.321e-02 0.052 0.958229
dis -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
rad 3.060e-01 6.635e-02 4.613 5.07e-06 ***
tax -1.233e-02 3.760e-03 -3.280 0.001112 **
ptratio -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
black 9.312e-03 2.686e-03 3.467 0.000573 ***
lstat -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
Comment: for eaxmple, we can observe the p-value
for age is very large. The first step we can
simply drop the variable age.

Interaction term:
summary(lm(medv~lstat*age,data=Boston))

##
Call:
lm(formula = medv ~ lstat * age, data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-15.806 -4.045 -1.333 2.085 27.552
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.0885359 1.4698355 24.553 < 2e-16 ***
lstat -1.3921168 0.1674555 -8.313 8.78e-16 ***
age -0.0007209 0.0198792 -0.036 0.9711
lstat:age 0.0041560 0.0018518 2.244 0.0252 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.149 on 502 degrees of freedom
Multiple R-squared: 0.5557, Adjusted R-squared: 0.5531
F-statistic: 209.3 on 3 and 502 DF, p-value: < 2.2e-16

74

summary(lm(medv~lstat:age,data=Boston))

##
Call:
lm(formula = medv ~ lstat:age, data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-13.347 -4.372 -1.534 1.914 27.193
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.1588631 0.4828240 62.46 <2e-16 ***
lstat:age -0.0077146 0.0003799 -20.31 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.827 on 504 degrees of freedom
Multiple R-squared: 0.4501, Adjusted R-squared: 0.449
F-statistic: 412.4 on 1 and 504 DF, p-value: < 2.2e-16
Higher degree:
lm.fit2 <- lm(medv ~ lstat + lstat^2, data=Boston); summary(lm.fit2)

##
Call:
lm(formula = medv ~ lstat + lstat^2, data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-15.168 -3.990 -1.318 2.034 24.500
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
Notice that the square is not working; we need to use
function I() to make sure the new variable is calculted
properly.
lm.fit2 <- lm(medv ~ lstat + I(lstat^2), data=Boston); summary(lm.fit2)

##
Call:
lm(formula = medv ~ lstat + I(lstat^2), data = Boston)
##
Residuals:
Min 1Q Median 3Q Max
-15.2834 -3.8313 -0.5295 2.3095 25.4148

75

##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.862007 0.872084 49.15 <2e-16 ***
lstat -2.332821 0.123803 -18.84 <2e-16 ***
I(lstat^2) 0.043547 0.003745 11.63 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 5.524 on 503 degrees of freedom
Multiple R-squared: 0.6407, Adjusted R-squared: 0.6393
F-statistic: 448.5 on 2 and 503 DF, p-value: < 2.2e-16
lm.fit <- lm(medv ~ lstat, data=Boston)
anova(lm.fit, lm.fit2)

Analysis of Variance Table
##
Model 1: medv ~ lstat
Model 2: medv ~ lstat + I(lstat^2)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 504 19472
2 503 15347 1 4125.1 135.2 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lm.fit1 <- lm(medv ~ .-age-indus, data=Boston)
lm.fit2 <- lm(medv ~., data = Boston)
anova(lm.fit1, lm.fit2)

Analysis of Variance Table
##
Model 1: medv ~ (crim + zn + indus + chas + nox + rm + age + dis + rad +
tax + ptratio + black + lstat) - age - indus
Model 2: medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad +
tax + ptratio + black + lstat
Res.Df RSS Df Sum of Sq F Pr(>F)
1 494 11081
2 492 11079 2 2.5794 0.0573 0.9443
Comment:
This way we can detect a better model without the variables
age and indus.

Use a different data
head(Carseats, 3) # Quick view

Sales CompPrice Income Advertising Population Price ShelveLoc Age
1 9.50 138 73 11 276 120 Bad 42
2 11.22 111 48 16 260 83 Good 65
3 10.06 113 35 10 269 80 Medium 59
Education Urban US
1 17 Yes Yes
2 10 Yes Yes
3 12 Yes Yes

76

summary(lm(Sales ~., data=Carseats))

##
Call:
lm(formula = Sales ~ ., data = Carseats)
##
Residuals:
Min 1Q Median 3Q Max
-2.8692 -0.6908 0.0211 0.6636 3.4115
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6606231 0.6034487 9.380 < 2e-16 ***
CompPrice 0.0928153 0.0041477 22.378 < 2e-16 ***
Income 0.0158028 0.0018451 8.565 2.58e-16 ***
Advertising 0.1230951 0.0111237 11.066 < 2e-16 ***
Population 0.0002079 0.0003705 0.561 0.575
Price -0.0953579 0.0026711 -35.700 < 2e-16 ***
ShelveLocGood 4.8501827 0.1531100 31.678 < 2e-16 ***
ShelveLocMedium 1.9567148 0.1261056 15.516 < 2e-16 ***
Age -0.0460452 0.0031817 -14.472 < 2e-16 ***
Education -0.0211018 0.0197205 -1.070 0.285
UrbanYes 0.1228864 0.1129761 1.088 0.277
USYes -0.1840928 0.1498423 -1.229 0.220

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 1.019 on 388 degrees of freedom
Multiple R-squared: 0.8734, Adjusted R-squared: 0.8698
F-statistic: 243.4 on 11 and 388 DF, p-value: < 2.2e-16

12.3 Logistic Regression

Use Logistic Regression
head(Smarket, 3) # Quick view

Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
1 2001 0.381 -0.192 -2.624 -1.055 5.010 1.1913 0.959 Up
2 2001 0.959 0.381 -0.192 -2.624 -1.055 1.2965 1.032 Up
3 2001 1.032 0.959 0.381 -0.192 -2.624 1.4112 -0.623 Down
glm.fit <- glm(Direction ~.-Today-Year,

data = Smarket, family = binomial)
summary(glm.fit)

##
Call:
glm(formula = Direction ~ . - Today - Year, family = binomial,
data = Smarket)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.446 -1.203 1.065 1.145 1.326

77

##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.126000 0.240736 -0.523 0.601
Lag1 -0.073074 0.050167 -1.457 0.145
Lag2 -0.042301 0.050086 -0.845 0.398
Lag3 0.011085 0.049939 0.222 0.824
Lag4 0.009359 0.049974 0.187 0.851
Lag5 0.010313 0.049511 0.208 0.835
Volume 0.135441 0.158360 0.855 0.392
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1741.6
##
Number of Fisher Scoring iterations: 3
glm.probs <- predict(glm.fit, type = "response")
glm.pred = rep("Down", 1250)
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Smarket$Direction)

##
glm.pred Down Up
Down 145 141
Up 457 507
sum(diag(table(glm.pred, Smarket$Direction)))/sum(table(glm.pred, Smarket$Direction))

[1] 0.5216

12.4 LDA

LDA can assist us dealing with data
head(Smarket, 3) # Quick view

Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
1 2001 0.381 -0.192 -2.624 -1.055 5.010 1.1913 0.959 Up
2 2001 0.959 0.381 -0.192 -2.624 -1.055 1.2965 1.032 Up
3 2001 1.032 0.959 0.381 -0.192 -2.624 1.4112 -0.623 Down
lda.fit <- lda(Direction ~ Lag1 + Lag2, data = Smarket)
lda.pred <- predict(lda.fit, Smarket)
names(lda.pred)

[1] "class" "posterior" "x"
table(lda.pred$class, Smarket$Direction)

##
Down Up
Down 114 102
Up 488 546

78

sum(diag(table(lda.pred$class, Smarket$Direction)))/sum(table(lda.pred$class, Smarket$Direction))

[1] 0.528

12.5 PCA

Principal Components Analysis
states=row.names(USArrests)
states

[1] "Alabama" "Alaska" "Arizona" "Arkansas"
[5] "California" "Colorado" "Connecticut" "Delaware"
[9] "Florida" "Georgia" "Hawaii" "Idaho"
[13] "Illinois" "Indiana" "Iowa" "Kansas"
[17] "Kentucky" "Louisiana" "Maine" "Maryland"
[21] "Massachusetts" "Michigan" "Minnesota" "Mississippi"
[25] "Missouri" "Montana" "Nebraska" "Nevada"
[29] "New Hampshire" "New Jersey" "New Mexico" "New York"
[33] "North Carolina" "North Dakota" "Ohio" "Oklahoma"
[37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina"
[41] "South Dakota" "Tennessee" "Texas" "Utah"
[45] "Vermont" "Virginia" "Washington" "West Virginia"
[49] "Wisconsin" "Wyoming"
names(USArrests)

[1] "Murder" "Assault" "UrbanPop" "Rape"
apply(USArrests, 2, mean)

Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
apply(USArrests, 2, var)

Murder Assault UrbanPop Rape
18.97047 6945.16571 209.51878 87.72916
pr.out=prcomp(USArrests, scale=TRUE)
names(pr.out)

[1] "sdev" "rotation" "center" "scale" "x"
pr.out$center

Murder Assault UrbanPop Rape
7.788 170.760 65.540 21.232
pr.out$scale

Murder Assault UrbanPop Rape
4.355510 83.337661 14.474763 9.366385
pr.out$rotation

PC1 PC2 PC3 PC4
Murder -0.5358995 0.4181809 -0.3412327 0.64922780
Assault -0.5831836 0.1879856 -0.2681484 -0.74340748

79

UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
Rape -0.5434321 -0.1673186 0.8177779 0.08902432
dim(pr.out$x)

[1] 50 4
biplot(pr.out, scale=0)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2

AlabamaAlaska

Arizona

Arkansas

California
Colorado Connecticut

Delaware
Florida

Georgia

Hawaii

Idaho

Illinois
Indiana IowaKansas

KentuckyLouisiana
MaineMaryland

Massachusetts

Michigan
Minnesota

Mississippi

Missouri

Montana

Nebraska
Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio
OklahomaOregonPennsylvania

Rhode Island

South Carolina

South DakotaTennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

Murder

Assault

UrbanPop

Rape

pr.out$rotation=-pr.out$rotation
pr.out$x=-pr.out$x
biplot(pr.out, scale=0)

80

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

PC1

P
C

2

AlabamaAlaska

Arizona

Arkansas

California
ColoradoConnecticut

Delaware
Florida

Georgia

Hawaii

Idaho

Illinois
IndianaIowa Kansas

Kentucky Louisiana
Maine Maryland

Massachusetts

Michigan
Minnesota

Mississippi

Missouri

Montana

Nebraska
Nevada

New Hampshire

New Jersey

New Mexico

New York

North Carolina

North Dakota

Ohio
Oklahoma

OregonPennsylvania

Rhode Island

South Carolina

South Dakota Tennessee

Texas

Utah

Vermont

Virginia

Washington

West Virginia

Wisconsin

Wyoming

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

Murder

Assault

UrbanPop

Rape

pr.out$sdev

[1] 1.5748783 0.9948694 0.5971291 0.4164494
pr.var=pr.out$sdev^2
pr.var

[1] 2.4802416 0.9897652 0.3565632 0.1734301
pve=pr.var/sum(pr.var)
pve

[1] 0.62006039 0.24744129 0.08914080 0.04335752
plot(pve, xlab="Principal Component",

ylab="Proportion of Variance Explained",
ylim=c(0,1),type='b')

81

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal Component

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

E
xp

la
in

ed

plot(cumsum(pve),
xlab="Principal Component",
ylab="Cumulative Proportion of Variance Explained",
ylim=c(0,1),type='b')

82

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal Component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 V

ar
ia

nc
e

E
xp

la
in

ed

a=c(1,2,8,-3)
cumsum(a)

[1] 1 3 11 8

12.6 Application: Stock Data; Logistic, LDA, QDA, and KNN

The Stock Market Data
library(ISLR)
names(Smarket)

[1] "Year" "Lag1" "Lag2" "Lag3" "Lag4" "Lag5"
[7] "Volume" "Today" "Direction"
dim(Smarket)

[1] 1250 9
summary(Smarket)

Year Lag1 Lag2
Min. :2001 Min. :-4.922000 Min. :-4.922000
1st Qu.:2002 1st Qu.:-0.639500 1st Qu.:-0.639500
Median :2003 Median : 0.039000 Median : 0.039000
Mean :2003 Mean : 0.003834 Mean : 0.003919
3rd Qu.:2004 3rd Qu.: 0.596750 3rd Qu.: 0.596750
Max. :2005 Max. : 5.733000 Max. : 5.733000

83

Lag3 Lag4 Lag5
Min. :-4.922000 Min. :-4.922000 Min. :-4.92200
1st Qu.:-0.640000 1st Qu.:-0.640000 1st Qu.:-0.64000
Median : 0.038500 Median : 0.038500 Median : 0.03850
Mean : 0.001716 Mean : 0.001636 Mean : 0.00561
3rd Qu.: 0.596750 3rd Qu.: 0.596750 3rd Qu.: 0.59700
Max. : 5.733000 Max. : 5.733000 Max. : 5.73300
Volume Today Direction
Min. :0.3561 Min. :-4.922000 Down:602
1st Qu.:1.2574 1st Qu.:-0.639500 Up :648
Median :1.4229 Median : 0.038500
Mean :1.4783 Mean : 0.003138
3rd Qu.:1.6417 3rd Qu.: 0.596750
Max. :3.1525 Max. : 5.733000
pairs(Smarket)

Year

−4 2 6 −4 2 6 −4 2 6 −4 2 6

20
01

−
4

6

Lag1

Lag2

−
4

6

−
4

6

Lag3

Lag4

−
4

6

−
4

6

Lag5

Volume

0.
5

−
4

6

Today

2001 2005 −4 2 6 −4 2 6 0.5 2.5 1.0 1.6

1.
0Direction

#cor(Smarket)
#cor(Smarket[,-9])
attach(Smarket)
plot(Volume)

84

0 200 400 600 800 1000 1200

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Index

V
ol

um
e

Logistic Regression

glm.fit=glm(
Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,
data=Smarket,family=binomial)

summary(glm.fit)

##
Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
Volume, family = binomial, data = Smarket)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-1.446 -1.203 1.065 1.145 1.326
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.126000 0.240736 -0.523 0.601
Lag1 -0.073074 0.050167 -1.457 0.145
Lag2 -0.042301 0.050086 -0.845 0.398
Lag3 0.011085 0.049939 0.222 0.824
Lag4 0.009359 0.049974 0.187 0.851
Lag5 0.010313 0.049511 0.208 0.835
Volume 0.135441 0.158360 0.855 0.392
##

85

(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 1731.2 on 1249 degrees of freedom
Residual deviance: 1727.6 on 1243 degrees of freedom
AIC: 1741.6
##
Number of Fisher Scoring iterations: 3
coef(glm.fit)

(Intercept) Lag1 Lag2 Lag3 Lag4
-0.126000257 -0.073073746 -0.042301344 0.011085108 0.009358938
Lag5 Volume
0.010313068 0.135440659
summary(glm.fit)$coef

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.126000257 0.24073574 -0.5233966 0.6006983
Lag1 -0.073073746 0.05016739 -1.4565986 0.1452272
Lag2 -0.042301344 0.05008605 -0.8445733 0.3983491
Lag3 0.011085108 0.04993854 0.2219750 0.8243333
Lag4 0.009358938 0.04997413 0.1872757 0.8514445
Lag5 0.010313068 0.04951146 0.2082966 0.8349974
Volume 0.135440659 0.15835970 0.8552723 0.3924004
summary(glm.fit)$coef[,4]

(Intercept) Lag1 Lag2 Lag3 Lag4 Lag5
0.6006983 0.1452272 0.3983491 0.8243333 0.8514445 0.8349974
Volume
0.3924004
glm.probs=predict(glm.fit,type="response")
glm.probs[1:10]

1 2 3 4 5 6 7
0.5070841 0.4814679 0.4811388 0.5152224 0.5107812 0.5069565 0.4926509
8 9 10
0.5092292 0.5176135 0.4888378
contrasts(Direction)

Up
Down 0
Up 1
glm.pred=rep("Down",1250)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction)

Direction
glm.pred Down Up
Down 145 141
Up 457 507
(507+145)/1250

[1] 0.5216

86

mean(glm.pred==Direction)

[1] 0.5216
train=(Year<2005)
Smarket.2005=Smarket[!train,]
dim(Smarket.2005)

[1] 252 9
Direction.2005=Direction[!train]
glm.fit=glm(

Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,
data=Smarket,family=binomial,subset=train)

glm.probs=predict(glm.fit,Smarket.2005,type="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction.2005)

Direction.2005
glm.pred Down Up
Down 77 97
Up 34 44
mean(glm.pred==Direction.2005)

[1] 0.4801587
mean(glm.pred!=Direction.2005)

[1] 0.5198413
glm.fit=glm(Direction~Lag1+Lag2,data=Smarket,family=binomial,subset=train)
glm.probs=predict(glm.fit,Smarket.2005,type="response")
glm.pred=rep("Down",252)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction.2005)

Direction.2005
glm.pred Down Up
Down 35 35
Up 76 106
mean(glm.pred==Direction.2005)

[1] 0.5595238
106/(106+76)

[1] 0.5824176
predict(glm.fit,newdata=data.frame(Lag1=c(1.2,1.5),Lag2=c(1.1,-0.8)),type="response")

1 2
0.4791462 0.4960939
Linear Discriminant Analysis

library(MASS)

87

lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,subset=train)
lda.fit

Call:
lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
##
Prior probabilities of groups:
Down Up
0.491984 0.508016
##
Group means:
Lag1 Lag2
Down 0.04279022 0.03389409
Up -0.03954635 -0.03132544
##
Coefficients of linear discriminants:
LD1
Lag1 -0.6420190
Lag2 -0.5135293
plot(lda.fit)

−4 −2 0 2 4

0.
0

0.
5

group Down

−4 −2 0 2 4

0.
0

0.
5

group Up

lda.pred=predict(lda.fit, Smarket.2005)
names(lda.pred)

[1] "class" "posterior" "x"

88

lda.class=lda.pred$class
table(lda.class,Direction.2005)

Direction.2005
lda.class Down Up
Down 35 35
Up 76 106
mean(lda.class==Direction.2005)

[1] 0.5595238
sum(lda.pred$posterior[,1]>=.5)

[1] 70
sum(lda.pred$posterior[,1]<.5)

[1] 182
lda.pred$posterior[1:20,1]

999 1000 1001 1002 1003 1004 1005
0.4901792 0.4792185 0.4668185 0.4740011 0.4927877 0.4938562 0.4951016
1006 1007 1008 1009 1010 1011 1012
0.4872861 0.4907013 0.4844026 0.4906963 0.5119988 0.4895152 0.4706761
1013 1014 1015 1016 1017 1018
0.4744593 0.4799583 0.4935775 0.5030894 0.4978806 0.4886331
lda.class[1:20]

[1] Up Up Up Up Up Up Up Up Up Up Up Down Up Up
[15] Up Up Up Down Up Up
Levels: Down Up
sum(lda.pred$posterior[,1]>.9)

[1] 0
Quadratic Discriminant Analysis

qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,subset=train)
qda.fit

Call:
qda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
##
Prior probabilities of groups:
Down Up
0.491984 0.508016
##
Group means:
Lag1 Lag2
Down 0.04279022 0.03389409
Up -0.03954635 -0.03132544
qda.class=predict(qda.fit,Smarket.2005)$class
table(qda.class,Direction.2005)

Direction.2005

89

qda.class Down Up
Down 30 20
Up 81 121
mean(qda.class==Direction.2005)

[1] 0.5992063
K-Nearest Neighbors

library(class)
train.X=cbind(Lag1,Lag2)[train,]
test.X=cbind(Lag1,Lag2)[!train,]
train.Direction=Direction[train]
set.seed(1)
knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,Direction.2005)

Direction.2005
knn.pred Down Up
Down 43 58
Up 68 83
(83+43)/252

[1] 0.5
knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred,Direction.2005)

Direction.2005
knn.pred Down Up
Down 48 54
Up 63 87
mean(knn.pred==Direction.2005)

[1] 0.5357143

12.7 Application: Insurance Data

An Application to Caravan Insurance Data

dim(Caravan)

[1] 5822 86
attach(Caravan)
summary(Purchase)

No Yes
5474 348
348/5822

[1] 0.05977327
standardized.X=scale(Caravan[,-86])
var(Caravan[,1])

90

[1] 165.0378
var(Caravan[,2])

[1] 0.1647078
var(standardized.X[,1])

[1] 1
var(standardized.X[,2])

[1] 1
test=1:1000
train.X=standardized.X[-test,]
test.X=standardized.X[test,]
train.Y=Purchase[-test]
test.Y=Purchase[test]
set.seed(1)
knn.pred=knn(train.X,test.X,train.Y,k=1)
mean(test.Y!=knn.pred)

[1] 0.118
mean(test.Y!="No")

[1] 0.059
table(knn.pred,test.Y)

test.Y
knn.pred No Yes
No 873 50
Yes 68 9
9/(68+9)

[1] 0.1168831
knn.pred=knn(train.X,test.X,train.Y,k=3)
table(knn.pred,test.Y)

test.Y
knn.pred No Yes
No 920 54
Yes 21 5
5/26

[1] 0.1923077
knn.pred=knn(train.X,test.X,train.Y,k=5)
table(knn.pred,test.Y)

test.Y
knn.pred No Yes
No 930 55
Yes 11 4
4/15

[1] 0.2666667

91

glm.fit=glm(Purchase~.,data=Caravan,family=binomial,subset=-test)

Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm.probs=predict(glm.fit,Caravan[test,],type="response")
glm.pred=rep("No",1000)
glm.pred[glm.probs>.5]="Yes"
table(glm.pred,test.Y)

test.Y
glm.pred No Yes
No 934 59
Yes 7 0
glm.pred=rep("No",1000)
glm.pred[glm.probs>.25]="Yes"
table(glm.pred,test.Y)

test.Y
glm.pred No Yes
No 919 48
Yes 22 11
11/(22+11)

[1] 0.3333333

92

13 Exercise 2

13.1 Boosting

13.1.1 Intuition

The key point, almost always missed in technical discussions, is that boosting is really about bias reduction.
Take the linear model, our example in this posting. A linear model is rarely if ever exactly correct. Thus use
of a linear model will result in bias; in some regions of the predictor vector X, the model will overestimate
the true regression function, while in others it will underestimate - no matter how large our sample is. It
thus may be profitable to try to reduce bias in regions in which our unweighted predictions are very bad, at
the hopefully small sacrifice of some prediction accuracy in places where our unweighted analysis is doing
well. (In the classification setting, a small loss in accuracy in estimating the conditional probability function
won’t hurt our predictions at all, since our predictions won’t change.) The reweighting (or other iterative)
process is aimed at achieving a positive tradeoff of that nature.

13.1.2 Model

In general context, consider a model like E[Y |X = x] = H(x), and we write it as E[Y |X = x] =
∑M
j=1 hj(x),

or E[Y |X = x] =
∑M
j=1 vihj(x) where vi’s will be some shrinkage parameters). To get all the components, we

will use iterative procedure. Define the partial sum

Hj(x) =
j∑

k=1
hk(x)

Since we consider some regression function here, use the l2 loss function, to get the hj(·) function, we solve

min
h(·)

{ n∑
i=1

[yi −Hj−1(xi)− h(xi)]2
}

and can imagine that the loss function can be changed (for classification instance).

The iterative algorithm is (1) start with some regression model y1 = h1(x), (2) compute the residuals,
including some shrinkage parameter, εi = y − v1h1(x), (3) at step j, consider regression εj = hj(x), (4)
update the residuals εj+1 = εj − vjhj(x) and to loop. Then set

ŷ =
M∑
j=1

vjεj =
M∑
j=1

vjhj(x)

Create sample data:
n=300
set.seed(1)
u=sort(runif(n)*2*pi)
y=sin(u)+rnorm(n)/4
df=data.frame(x=u,y=y)

Visualize:
plot(df)

93

0 1 2 3 4 5 6

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

x

y

Visualize:
Red line is the initial guess
we have, without boosting,
using a simple call of the
regression function. The blue
one is the one obtained using
boosting. The dotted line is the true model.
v=.05
library(splines)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$y - v*yp
YP=v*yp

for(t in 1:100){
fit=lm(yr~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=df)
df$yr=df$yr - v*yp
YP=cbind(YP,v*yp)

}

nd=data.frame(x=seq(0,2*pi,by=.01))
viz=function(M){
if(M==1) y=YP[,1]
if(M>1) y=apply(YP[,1:M],1,sum)

plot(dfx,dfy,ylab="",xlab="")

94

lines(df$x,y,type="l",col="red",lwd=3)
fit=lm(y~bs(x,degree=1,df=3),data=df)
yp=predict(fit,newdata=nd)
lines(nd$x,yp,type="l",col="blue",lwd=3)
lines(nd$x,sin(nd$x),lty=2)}

viz(50)

Warning in bs(x, degree = 1L, knots = structure(c(2.08092116216283,
4.02645437093874: some 'x' values beyond boundary knots may cause ill-
conditioned bases

0 1 2 3 4 5 6

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

13.2 Dimension Reduction Techniques

Use Swiss dataset for linear model:
head(swiss)

Fertility Agriculture Examination Education Catholic
Courtelary 80.2 17.0 15 12 9.96
Delemont 83.1 45.1 6 9 84.84
Franches-Mnt 92.5 39.7 5 5 93.40
Moutier 85.8 36.5 12 7 33.77
Neuveville 76.9 43.5 17 15 5.16
Porrentruy 76.1 35.3 9 7 90.57
Infant.Mortality
Courtelary 22.2

95

Delemont 22.2
Franches-Mnt 20.2
Moutier 20.3
Neuveville 20.6
Porrentruy 26.6
head(longley) # Use this data set as example!

GNP.deflator GNP Unemployed Armed.Forces Population Year Employed
1947 83.0 234.289 235.6 159.0 107.608 1947 60.323
1948 88.5 259.426 232.5 145.6 108.632 1948 61.122
1949 88.2 258.054 368.2 161.6 109.773 1949 60.171
1950 89.5 284.599 335.1 165.0 110.929 1950 61.187
1951 96.2 328.975 209.9 309.9 112.075 1951 63.221
1952 98.1 346.999 193.2 359.4 113.270 1952 63.639

13.2.1 PCR

require(pls)

Loading required package: pls

##
Attaching package: 'pls'

The following object is masked from 'package:stats':
##
loadings
pcr_model <- pcr(Sepal.Length~., data = iris, scale = TRUE, validation = "CV")
Comment:
By setting the parameter scale equal
to TRUE the data is standardized before
running the pcr algorithm on it. You can
also perform validation by setting the
argument validation. In this case I
chose to perform 10 fold cross-validation
and therefore set the validation argument
to "CV", however there other validation
methods available just type ?pcr in the
R command window to gather some more
information on the parameters of the pcr function.

Suumary:
summary(pcr_model)

Data: X dimension: 150 5
Y dimension: 150 1
Fit method: svdpc
Number of components considered: 5
##
VALIDATION: RMSEP
Cross-validated using 10 random segments.
(Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
CV 0.8308 0.5132 0.5084 0.3965 0.3344 0.3157

96

adjCV 0.8308 0.5126 0.5078 0.3958 0.3336 0.3149
##
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps
X 56.20 88.62 99.07 99.73 100.00
Sepal.Length 62.71 63.58 78.44 84.95 86.73
Plot the root mean squared error
validationplot(pcr_model)

0 1 2 3 4 5

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Sepal.Length

number of components

R
M

S
E

P

Plot the cross validation MSE
validationplot(pcr_model, val.type="MSEP")

97

0 1 2 3 4 5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Sepal.Length

number of components

M
S

E
P

Plot the R2
validationplot(pcr_model, val.type = "R2")

98

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Sepal.Length

number of components

R
2

Plot Prediction vs. Estimate
predplot(

pcr_model,
xlab="Measurement",
ylab="Prediction",
main="Sepal Length Principle Component Regression",
cex=0.5)

99

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

4.
5

5.
5

6.
5

7.
5

Sepal Length Principle Component Regression

Measurement

P
re

di
ct

io
n

Plot Coefficients:
coefplot(pcr_model)

100

1 2 3 4 5

−
0.

5
0.

0
0.

5
1.

0
1.

5
Sepal.Length

variable

re
gr

es
si

on
 c

oe
ffi

ci
en

t

Use PCR on a traning-test set
and evaluate its performance
using, for example, using only 3 components
Train-test split
train <- iris[1:120,]
y_test <- iris[120:150, 1]
test <- iris[120:150, 2:5]

pcr_model <- pcr(Sepal.Length~., data = train,scale =TRUE, validation = "CV")

pcr_pred <- predict(pcr_model, test, ncomp = 3)
mean((pcr_pred - y_test)^2)

[1] 0.213731

13.2.2 Step-wise Regression

fit <- lm(
data=swiss,
formula=swiss$Fertility~.

)
step <- step(

fit,
direction="backward"
trace=0

101

)

Start: AIC=190.69
swiss$Fertility ~ Agriculture + Examination + Education + Catholic +
Infant.Mortality
##
Df Sum of Sq RSS AIC
- Examination 1 53.03 2158.1 189.86
<none> 2105.0 190.69
- Agriculture 1 307.72 2412.8 195.10
- Infant.Mortality 1 408.75 2513.8 197.03
- Catholic 1 447.71 2552.8 197.75
- Education 1 1162.56 3267.6 209.36
##
Step: AIC=189.86
swiss$Fertility ~ Agriculture + Education + Catholic + Infant.Mortality
##
Df Sum of Sq RSS AIC
<none> 2158.1 189.86
- Agriculture 1 264.18 2422.2 193.29
- Infant.Mortality 1 409.81 2567.9 196.03
- Catholic 1 956.57 3114.6 205.10
- Education 1 2249.97 4408.0 221.43
step$anova

Step Df Deviance Resid. Df Resid. Dev AIC
1 NA NA 41 2105.043 190.6913
2 - Examination 1 53.02656 42 2158.069 189.8606
Compare results

13.2.3 Ridge vs. Lasso

Data:
swiss <- datasets::swiss # head(swiss)
x <- model.matrix(Fertility~., swiss)[,-1]
y <- swiss$Fertility
lambda <- 10^seq(10, -2, length = 100)

Create test and training sets
library(glmnet)

Loading required package: Matrix

Loading required package: foreach

Loaded glmnet 2.0-10
set.seed(489)
train = sample(1:nrow(x), nrow(x)/2)
test = (-train)
ytest = y[test]

OLS

102

swisslm <- lm(Fertility~., data = swiss)
coef(swisslm)

(Intercept) Agriculture Examination Education
66.9151817 -0.1721140 -0.2580082 -0.8709401
Catholic Infant.Mortality
0.1041153 1.0770481
Ridge
ridge.mod <- glmnet(x, y, alpha = 0, lambda = lambda)
predict(ridge.mod, s = 0, exact = T, type = 'coefficients')[1:6,]

(Intercept) Agriculture Examination Education
66.9365901 -0.1721983 -0.2590771 -0.8705300
Catholic Infant.Mortality
0.1040307 1.0770215
swisslm <- lm(Fertility~., data = swiss, subset = train)
ridge.mod <- glmnet(x[train,], y[train], alpha = 0, lambda = lambda)

Find the best lambda from our list via cross-validation
cv.out <- cv.glmnet(x[train,], y[train], alpha = 0)

Warning: Option grouped=FALSE enforced in cv.glmnet, since < 3 observations
per fold
bestlam <- cv.out$lambda.min

Make predictions
ridge.pred <- predict(ridge.mod, s = bestlam, newx = x[test,])
s.pred <- predict(swisslm, newdata = swiss[test,])

Check MSE
mean((s.pred-ytest)^2)

[1] 106.0087
mean((ridge.pred-ytest)^2)

[1] 93.02157
Take a look at the coefficients
out = glmnet(x[train,],y[train],alpha = 0)
predict(ridge.mod, type = "coefficients", s = bestlam)[1:6,]

(Intercept) Agriculture Examination Education
64.90631178 -0.16557837 -0.59425090 -0.35814759
Catholic Infant.Mortality
0.06545382 1.30375306
Lasso
lasso.mod <- glmnet(x[train,], y[train], alpha = 1, lambda = lambda)
lasso.pred <- predict(lasso.mod, s = bestlam, newx = x[test,])
mean((lasso.pred-ytest)^2)

[1] 124.1039
lasso.coef <- predict(lasso.mod, type = 'coefficients', s = bestlam)[1:6,]
lasso.coef

103

(Intercept) Agriculture Examination Education
54.72576032 -0.01493362 -0.40726342 -0.05839363
Catholic Infant.Mortality
0.03829186 1.19563533
require(glmnet)
Data = considering that we have a data frame named dataF, with its first column being the class
dataF <- swiss; head(swiss)

Fertility Agriculture Examination Education Catholic
Courtelary 80.2 17.0 15 12 9.96
Delemont 83.1 45.1 6 9 84.84
Franches-Mnt 92.5 39.7 5 5 93.40
Moutier 85.8 36.5 12 7 33.77
Neuveville 76.9 43.5 17 15 5.16
Porrentruy 76.1 35.3 9 7 90.57
Infant.Mortality
Courtelary 22.2
Delemont 22.2
Franches-Mnt 20.2
Moutier 20.3
Neuveville 20.6
Porrentruy 26.6
Ridge
x <- as.matrix(dataF[,-1]) # Removes class
y <- as.double(as.matrix(dataF[, 1])) # Only class

Fitting the model (Ridge: Alpha = 0)
set.seed(999)
cv.ridge <- cv.glmnet(

x, y,
family='gaussian', alpha=0,
parallel=TRUE, standardize=TRUE,
type.measure='auc')

Warning: executing %dopar% sequentially: no parallel backend registered

Warning in cv.elnet(list(structure(list(a0 = structure(c(70.852380952381, :
Only 'mse', 'deviance' or 'mae' available for Gaussian models; 'mse' used
Results
plot(cv.ridge)

104

0 2 4 6 8

50
10

0
15

0
20

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

cv.ridge$lambda.min

[1] 1.190139
cv.ridge$lambda.1se

[1] 10.11324
coef(cv.ridge, s=cv.ridge$lambda.min)

6 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) 63.66015150
Agriculture -0.11232379
Examination -0.33164460
Education -0.68644253
Catholic 0.08147413
Infant.Mortality 1.09441301
Here we use gaussian assuming linearity for the dataset we want to model.

For the above code, we can also execute logistic regression (note the family='binomial'), in parallel (if a cluster or cores have been previously allocated), internally standardizing (needed for more appropriate regularization) and wanting to observe the results of AUC (area under ROC curve

require(glmnet)
Data = considering that we have a data frame named dataF, with its first column being the class
x <- as.matrix(dataF[,-1]) # Removes class
y <- as.double(as.matrix(dataF[, 1])) # Only class

105

Lasso
Fitting the model (Lasso: Alpha = 1)
set.seed(999)
cv.lasso <- cv.glmnet(

x, y,
family='gaussian',
alpha=1, parallel=TRUE, standardize=TRUE,
type.measure='auc')

Warning in cv.elnet(list(structure(list(a0 = structure(c(70.852380952381, :
Only 'mse', 'deviance' or 'mae' available for Gaussian models; 'mse' used
Results
plot(cv.lasso)

−3 −2 −1 0 1 2

50
10

0
15

0

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 2 2

plot(cv.lasso$glmnet.fit, xvar="lambda", label=TRUE)

106

−3 −2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

Log Lambda

C
oe

ffi
ci

en
ts

5 5 5 5 4 2

1
2

3

4

5

cv.lasso$lambda.min

[1] 0.2391266
cv.lasso$lambda.1se

[1] 1.686991
coef(cv.lasso, s=cv.lasso$lambda.min)

6 x 1 sparse Matrix of class "dgCMatrix"
1
(Intercept) 64.14777592
Agriculture -0.12990878
Examination -0.22949180
Education -0.80516212
Catholic 0.09466401
Infant.Mortality 1.06831289

107

14 Exercise 3

14.1 Support Vector Classifier

Support Vector Classifier

set.seed(1)
x=matrix(rnorm(20*2), ncol=2)
y=c(rep(-1,10), rep(1,10))
x[y==1,]=x[y==1,] + 1
plot(x, col=(3-y))

−1 0 1 2

−
2

−
1

0
1

2

x[,1]

x[
,2

]

dat=data.frame(x=x, y=as.factor(y))
library(e1071)
svmfit=svm(y~., data=dat, kernel="linear", cost=10,scale=FALSE)
plot(svmfit, dat)

108

−
1

1

−1 0 1 2

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

o

o

o

o
o

o

o

o

o

o
o o

o

x

x
x

x

x

xx

SVM classification plot

x.2

x.
1

svmfit$index

[1] 1 2 5 7 14 16 17
summary(svmfit)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10,
scale = FALSE)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.5
##
Number of Support Vectors: 7
##
(4 3)
##
##
Number of Classes: 2
##
Levels:
-1 1

109

svmfit=svm(y~., data=dat, kernel="linear", cost=0.1,scale=FALSE)
plot(svmfit, dat)

−
1

1

−1 0 1 2

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

o

o

o

o

x

x

x

x

x
xx

x

x

x

x

x

xx

x

x

SVM classification plot

x.2

x.
1

svmfit$index

[1] 1 2 3 4 5 7 9 10 12 13 14 15 16 17 18 20
set.seed(1)
tune.out=tune(svm,y~.,data=dat,kernel="linear",ranges=list(cost=c(0.001, 0.01, 0.1, 1,5,10,100)))
summary(tune.out)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost
0.1
##
- best performance: 0.1
##
- Detailed performance results:
cost error dispersion
1 1e-03 0.70 0.4216370
2 1e-02 0.70 0.4216370
3 1e-01 0.10 0.2108185

110

4 1e+00 0.15 0.2415229
5 5e+00 0.15 0.2415229
6 1e+01 0.15 0.2415229
7 1e+02 0.15 0.2415229
bestmod=tune.out$best.model
summary(bestmod)

##
Call:
best.tune(method = svm, train.x = y ~ ., data = dat, ranges = list(cost = c(0.001,
0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 0.1
gamma: 0.5
##
Number of Support Vectors: 16
##
(8 8)
##
##
Number of Classes: 2
##
Levels:
-1 1
xtest=matrix(rnorm(20*2), ncol=2)
ytest=sample(c(-1,1), 20, rep=TRUE)
xtest[ytest==1,]=xtest[ytest==1,] + 1
testdat=data.frame(x=xtest, y=as.factor(ytest))
ypred=predict(bestmod,testdat)
table(predict=ypred, truth=testdat$y)

truth
predict -1 1
-1 11 1
1 0 8
svmfit=svm(y~., data=dat, kernel="linear", cost=.01,scale=FALSE)
ypred=predict(svmfit,testdat)
table(predict=ypred, truth=testdat$y)

truth
predict -1 1
-1 11 2
1 0 7
x[y==1,]=x[y==1,]+0.5
plot(x, col=(y+5)/2, pch=19)

111

0 1 2 3

−
2

−
1

0
1

2
3

x[,1]

x[
,2

]

dat=data.frame(x=x,y=as.factor(y))
svmfit=svm(y~., data=dat, kernel="linear", cost=1e5)
summary(svmfit)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1e+05)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1e+05
gamma: 0.5
##
Number of Support Vectors: 3
##
(1 2)
##
##
Number of Classes: 2
##
Levels:
-1 1

112

plot(svmfit, dat)

−
1

1

−1 0 1 2

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

o
o

o

o

o

o
o

o

o

o

o

o

oo

o o
o

x

x

x

SVM classification plot

x.2

x.
1

svmfit=svm(y~., data=dat, kernel="linear", cost=1)
summary(svmfit)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 1)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 1
gamma: 0.5
##
Number of Support Vectors: 7
##
(4 3)
##
##
Number of Classes: 2
##
Levels:
-1 1

113

plot(svmfit,dat)

−
1

1

−1 0 1 2

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

o

o

o

o
o

o

o

o

o

o
o o

o

x

x
x

x

x

xx

SVM classification plot

x.2

x.
1

14.2 Support Vector Machine

Support Vector Machine
set.seed(1)
x=matrix(rnorm(200*2), ncol=2)
x[1:100,]=x[1:100,]+2
x[101:150,]=x[101:150,]-2
y=c(rep(1,150),rep(2,50))
dat=data.frame(x=x,y=as.factor(y))
plot(x, col=y)

114

−4 −2 0 2 4

−
4

−
2

0
2

4

x[,1]

x[
,2

]

train=sample(200,100)
svmfit=svm(y~., data=dat[train,], kernel="radial", gamma=1, cost=1)
plot(svmfit, dat[train,])

115

1
2

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o o

o
o oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

x
x

x

x

x

x

x

x

x x

x

xx
x

x

x

x

x

x x

x

x
x

x

x

x
x

x
x

x

x

x

x

x
x
x

x

SVM classification plot

x.2

x.
1

summary(svmfit)

##
Call:
svm(formula = y ~ ., data = dat[train,], kernel = "radial",
gamma = 1, cost = 1)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 1
##
Number of Support Vectors: 37
##
(17 20)
##
##
Number of Classes: 2
##
Levels:
1 2
svmfit=svm(y~., data=dat[train,], kernel="radial",gamma=1,cost=1e5)
plot(svmfit,dat[train,])

116

1
2

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o o

o

o oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

x
x

x

x

x x

x
x

xx
x

x

x

x
x

xx
x

x

x

x

x

x
x
x

x

SVM classification plot

x.2

x.
1

set.seed(1)
tune.out=tune(svm, y~., data=dat[train,], kernel="radial", ranges=list(cost=c(0.1,1,10,100,1000),gamma=c(0.5,1,2,3,4)))
summary(tune.out)

##
Parameter tuning of 'svm':
##
- sampling method: 10-fold cross validation
##
- best parameters:
cost gamma
1 2
##
- best performance: 0.12
##
- Detailed performance results:
cost gamma error dispersion
1 1e-01 0.5 0.27 0.11595018
2 1e+00 0.5 0.13 0.08232726
3 1e+01 0.5 0.15 0.07071068
4 1e+02 0.5 0.17 0.08232726
5 1e+03 0.5 0.21 0.09944289
6 1e-01 1.0 0.25 0.13540064
7 1e+00 1.0 0.13 0.08232726
8 1e+01 1.0 0.16 0.06992059
9 1e+02 1.0 0.20 0.09428090

117

10 1e+03 1.0 0.20 0.08164966
11 1e-01 2.0 0.25 0.12692955
12 1e+00 2.0 0.12 0.09189366
13 1e+01 2.0 0.17 0.09486833
14 1e+02 2.0 0.19 0.09944289
15 1e+03 2.0 0.20 0.09428090
16 1e-01 3.0 0.27 0.11595018
17 1e+00 3.0 0.13 0.09486833
18 1e+01 3.0 0.18 0.10327956
19 1e+02 3.0 0.21 0.08755950
20 1e+03 3.0 0.22 0.10327956
21 1e-01 4.0 0.27 0.11595018
22 1e+00 4.0 0.15 0.10801234
23 1e+01 4.0 0.18 0.11352924
24 1e+02 4.0 0.21 0.08755950
25 1e+03 4.0 0.24 0.10749677
table(true=dat[-train,"y"], pred=predict(tune.out$best.model,newx=dat[-train,]))

pred
true 1 2
1 56 21
2 18 5

14.3 ROC Curve

ROC Curves

library(ROCR)

Loading required package: gplots

##
Attaching package: 'gplots'

The following object is masked from 'package:stats':
##
lowess
rocplot=function(pred, truth, ...){

predob = prediction(pred, truth)
perf = performance(predob, "tpr", "fpr")
plot(perf,...)}

svmfit.opt=svm(y~., data=dat[train,], kernel="radial",gamma=2, cost=1,decision.values=T)
fitted=attributes(predict(svmfit.opt,dat[train,],decision.values=TRUE))$decision.values
par(mfrow=c(1,2))
rocplot(fitted,dat[train,"y"],main="Training Data")
svmfit.flex=svm(y~., data=dat[train,], kernel="radial",gamma=50, cost=1, decision.values=T)
fitted=attributes(predict(svmfit.flex,dat[train,],decision.values=T))$decision.values
rocplot(fitted,dat[train,"y"],add=T,col="red")
fitted=attributes(predict(svmfit.opt,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],main="Test Data")
fitted=attributes(predict(svmfit.flex,dat[-train,],decision.values=T))$decision.values
rocplot(fitted,dat[-train,"y"],add=T,col="red")

118

Training Data

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Test Data

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

14.4 SVM with Multiple Classes

SVM with Multiple Classes

set.seed(1)
x=rbind(x, matrix(rnorm(50*2), ncol=2))
y=c(y, rep(0,50))
x[y==0,2]=x[y==0,2]+2
dat=data.frame(x=x, y=as.factor(y))
par(mfrow=c(1,1))
plot(x,col=(y+1))

119

−4 −2 0 2 4

−
4

−
2

0
2

4

x[,1]

x[
,2

]

svmfit=svm(y~., data=dat, kernel="radial", cost=10, gamma=1)
plot(svmfit, dat)

120

0
1

2

−4 −2 0 2 4

−2

0

2

4

o

o

o

ooo

o

o

o
o

oo

o oo
o o

o
o

oo
o

o

o

o
o

o o

o
o

o o

oo

o

o
o

o

o
o

o

o

o
o

o
o

o

o
o

oo

o

o
o

o

o
oo

oo
o

o
oo
o

o
o o

oo
o o

o

o
o o

o
o

ooo
o oo o

o
o

ooo oo o
o

o
o

o

o

o

o

o

oo
o

o

o

o

oo

o

o
o

o

o
oo

o
oo

o

o
o

oo

o

oo

o

o
o

o
o oo

o

o
o

o

o

o oo

o

oo

x

x

xx

x x
x

x

x

x
x

x

x
x x

x

x

x
x

x
x

x

x

x

xx
x

xx

x

x

xx x
x

x

x

x
x

x

x
x

x

x

x

x
x

xx

x

x

x

x
x

x

x
x

x

x

x xx

x

x

x

x
x

x
x

x

x

xx

x

x
x

x

xx x

x

x

x

x

x

xx x
xx

x

x

x

x

x

x x

x
x

x

x
x

x

x

x

SVM classification plot

x.2

x.
1

14.5 Application to Gene Expression Data

Application to Gene Expression Data

library(ISLR)
names(Khan)

[1] "xtrain" "xtest" "ytrain" "ytest"
dim(Khan$xtrain)

[1] 63 2308
dim(Khan$xtest)

[1] 20 2308
length(Khan$ytrain)

[1] 63
length(Khan$ytest)

[1] 20
table(Khan$ytrain)

##
1 2 3 4

121

8 23 12 20
table(Khan$ytest)

##
1 2 3 4
3 6 6 5
dat=data.frame(x=Khan$xtrain, y=as.factor(Khan$ytrain))
out=svm(y~., data=dat, kernel="linear",cost=10)
summary(out)

##
Call:
svm(formula = y ~ ., data = dat, kernel = "linear", cost = 10)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 10
gamma: 0.0004332756
##
Number of Support Vectors: 58
##
(20 20 11 7)
##
##
Number of Classes: 4
##
Levels:
1 2 3 4
table(out$fitted, dat$y)

##
1 2 3 4
1 8 0 0 0
2 0 23 0 0
3 0 0 12 0
4 0 0 0 20
dat.te=data.frame(x=Khan$xtest, y=as.factor(Khan$ytest))
pred.te=predict(out, newdata=dat.te)
table(pred.te, dat.te$y)

##
pred.te 1 2 3 4
1 3 0 0 0
2 0 6 2 0
3 0 0 4 0
4 0 0 0 5

122

15 Exercise 4

15.1 Cubic Spline

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))
n <- 9
x <- 1:n
y <- rnorm(n)

Plot
plot(x, y, main = paste("spline[fun](.) through", n, "points"))
lines(spline(x, y))
lines(spline(x, y, n = 201), col = 2)

2 4 6 8

−
1.

0
0.

5

spline[fun](.) through 9 points

x

y

y <- (x-6)^2
plot(x, y, main = "spline(.) -- 3 methods")
lines(spline(x, y, n = 201), col = 2)
lines(spline(x, y, n = 201, method = "natural"), col = 3)
lines(spline(x, y, n = 201, method = "periodic"), col = 4)

Warning in spline(x, y, n = 201, method = "periodic"): spline: first and
last y values differ - using y[1] for both

123

legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

2 4 6 8

0
5

10
15

20
25

spline(.) −− 3 methods

x

y

fmm
natural
periodic

y <- sin((x-0.5)*pi)
f <- splinefun(x, y)
ls(envir = environment(f))

[1] "z"
splinecoef <- get("z", envir = environment(f))
curve(f(x), 1, 10, col = "green", lwd = 1.5)
points(splinecoef, col = "purple", cex = 2)

124

2 4 6 8 10

0
5

10
15

x

f(
x)

curve(f(x, deriv=1), 1, 10, col = 2, lwd = 1.5)

125

2 4 6 8 10

−
5

0
5

10
15

20
25

x

f(
x,

 d
er

iv
 =

 1
)

curve(f(x, deriv=2), 1, 10, col = 2, lwd = 1.5, n = 401)

126

2 4 6 8 10

−
10

0
5

10
15

20

x

f(
x,

 d
er

iv
 =

 2
)

curve(f(x, deriv=3), 1, 10, col = 2, lwd = 1.5, n = 401)

127

2 4 6 8 10

−
20

−
10

0
10

20

x

f(
x,

 d
er

iv
 =

 3
)

par(op)

15.2 Sampling for Monte Carlo

Generate a Monte Carlo sample
generateMCSample <- function(n, vals) {

Packages to generate quasi-random sequences
and rearrange the data
require(randtoolbox)
require(plyr)

Generate a Sobol' sequence
sob <- sobol(n, length(vals))

Fill a matrix with the values
inverted from uniform values to
distributions of choice
samp <- matrix(rep(0,n*(length(vals)+1)), nrow=n)
samp[,1] <- 1:n
for (i in 1:length(vals)) {

l <- vals[[i]]
dist <- l$dist
params <- l$params
samp[,i+1] <- eval(call(paste("q",dist,sep=""),sob[,i],params[1],params[2]))

}

128

Convert matrix to data frame and label
samp <- as.data.frame(samp)
names(samp) <- c("n",laply(vals, function(l) l$var))
return(samp)

}

Example:
n <- 1000 # number of simulations to run

List described the distribution of each variable
vals <- list(list(var="Uniform",

dist="unif",
params=c(0,1)),

list(var="Normal",
dist="norm",
params=c(0,1)),

list(var="Weibull",
dist="weibull",
params=c(2,1)))

Generate the sample
install.packages('randtoolbox')
library('randtoolbox')

Loading required package: rngWELL

This is randtoolbox. For overview, type 'help("randtoolbox")'.
samp <- generateMCSample(n,vals)

Loading required package: plyr
hist(samp[,1])

129

Histogram of samp[, 1]

samp[, 1]

F
re

qu
en

cy

0 200 400 600 800 1000

0
20

40
60

80
10

0

hist(samp[,2])

130

Histogram of samp[, 2]

samp[, 2]

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

hist(samp[,3])

131

Histogram of samp[, 3]

samp[, 3]

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
50

10
0

15
0

132

16 Exercise 5

16.1 Fitting Classification Trees

Set up data set:
install.packages('tree')
library(tree)
library(ISLR)
attach(Carseats)
High <- ifelse(Sales <= 8, "No", "Yes")
Carseats <- data.frame(Carseats, High)

Fit one classification
to predict High using all variables but Sales.
tree.carseats <- tree(High~.-Sales,Carseats)
summary(tree.carseats)

##
Classification tree:
tree(formula = High ~ . - Sales, data = Carseats)
Variables actually used in tree construction:
[1] "ShelveLoc" "Price" "Income" "CompPrice" "Population"
[6] "Advertising" "Age" "US"
Number of terminal nodes: 27
Residual mean deviance: 0.4575 = 170.7 / 373
Misclassification error rate: 0.09 = 36 / 400
Comment training error is 0.09 = 36/400,
which is given by equation
-2 \sum_m \sum_k n_{mk} \log \hat{p}_{mk}
where n_{mk} is the number of observations
in the mth terminal node that belong to the kth class.

Plot:
plot(tree.carseats)
text(tree.carseats, pretty=0)

133

|
ShelveLoc: Bad,Medium

Price < 92.5

Income < 57
CompPrice < 110.5Population < 207.5

Advertising < 13.5

CompPrice < 124.5

Price < 106.5
Population < 177

Income < 60.5

Price < 122.5

ShelveLoc: Bad
Price < 109.5

Age < 49.5

CompPrice < 147.5
Price < 147CompPrice < 152.5

Age < 54.5
CompPrice < 130.5
Income < 100

CompPrice < 122.5
Price < 125

Price < 135
US: No

Price < 109
Income < 46

NoYesYesYes

NoYes
No

No

No
Yes

YesNo

No
YesNoNo

NoYesYesNo
YesNo

YesNo
YesNoYes

Each branche:
tree.carseats

node), split, n, deviance, yval, (yprob)
* denotes terminal node
##
1) root 400 541.500 No (0.59000 0.41000)
2) ShelveLoc: Bad,Medium 315 390.600 No (0.68889 0.31111)
4) Price < 92.5 46 56.530 Yes (0.30435 0.69565)
8) Income < 57 10 12.220 No (0.70000 0.30000)
16) CompPrice < 110.5 5 0.000 No (1.00000 0.00000) *
17) CompPrice > 110.5 5 6.730 Yes (0.40000 0.60000) *
9) Income > 57 36 35.470 Yes (0.19444 0.80556)
18) Population < 207.5 16 21.170 Yes (0.37500 0.62500) *
19) Population > 207.5 20 7.941 Yes (0.05000 0.95000) *
5) Price > 92.5 269 299.800 No (0.75465 0.24535)
10) Advertising < 13.5 224 213.200 No (0.81696 0.18304)
20) CompPrice < 124.5 96 44.890 No (0.93750 0.06250)
40) Price < 106.5 38 33.150 No (0.84211 0.15789)
80) Population < 177 12 16.300 No (0.58333 0.41667)
160) Income < 60.5 6 0.000 No (1.00000 0.00000) *
161) Income > 60.5 6 5.407 Yes (0.16667 0.83333) *
81) Population > 177 26 8.477 No (0.96154 0.03846) *
41) Price > 106.5 58 0.000 No (1.00000 0.00000) *
21) CompPrice > 124.5 128 150.200 No (0.72656 0.27344)
42) Price < 122.5 51 70.680 Yes (0.49020 0.50980)
84) ShelveLoc: Bad 11 6.702 No (0.90909 0.09091) *

134

85) ShelveLoc: Medium 40 52.930 Yes (0.37500 0.62500)
170) Price < 109.5 16 7.481 Yes (0.06250 0.93750) *
171) Price > 109.5 24 32.600 No (0.58333 0.41667)
342) Age < 49.5 13 16.050 Yes (0.30769 0.69231) *
343) Age > 49.5 11 6.702 No (0.90909 0.09091) *
43) Price > 122.5 77 55.540 No (0.88312 0.11688)
86) CompPrice < 147.5 58 17.400 No (0.96552 0.03448) *
87) CompPrice > 147.5 19 25.010 No (0.63158 0.36842)
174) Price < 147 12 16.300 Yes (0.41667 0.58333)
348) CompPrice < 152.5 7 5.742 Yes (0.14286 0.85714) *
349) CompPrice > 152.5 5 5.004 No (0.80000 0.20000) *
175) Price > 147 7 0.000 No (1.00000 0.00000) *
11) Advertising > 13.5 45 61.830 Yes (0.44444 0.55556)
22) Age < 54.5 25 25.020 Yes (0.20000 0.80000)
44) CompPrice < 130.5 14 18.250 Yes (0.35714 0.64286)
88) Income < 100 9 12.370 No (0.55556 0.44444) *
89) Income > 100 5 0.000 Yes (0.00000 1.00000) *
45) CompPrice > 130.5 11 0.000 Yes (0.00000 1.00000) *
23) Age > 54.5 20 22.490 No (0.75000 0.25000)
46) CompPrice < 122.5 10 0.000 No (1.00000 0.00000) *
47) CompPrice > 122.5 10 13.860 No (0.50000 0.50000)
94) Price < 125 5 0.000 Yes (0.00000 1.00000) *
95) Price > 125 5 0.000 No (1.00000 0.00000) *
3) ShelveLoc: Good 85 90.330 Yes (0.22353 0.77647)
6) Price < 135 68 49.260 Yes (0.11765 0.88235)
12) US: No 17 22.070 Yes (0.35294 0.64706)
24) Price < 109 8 0.000 Yes (0.00000 1.00000) *
25) Price > 109 9 11.460 No (0.66667 0.33333) *
13) US: Yes 51 16.880 Yes (0.03922 0.96078) *
7) Price > 135 17 22.070 No (0.64706 0.35294)
14) Income < 46 6 0.000 No (1.00000 0.00000) *
15) Income > 46 11 15.160 Yes (0.45455 0.54545) *
Predict:
set.seed(2)
train <- sample(1:nrow(Carseats), 200)
Carseats.test <- Carseats[-train,]
High.test <- High[-train]
tree.carseats <- tree(High~.-Sales,Carseats,subset=train)
tree.pred <- predict(tree.carseats,Carseats.test,type="class")
table(tree.pred,High.test)

High.test
tree.pred No Yes
No 86 27
Yes 30 57
Testing Accuracy:
(86+57)/(86+27+30+57)

[1] 0.715
Pruning:
Weather it might lead to improved results:
set.seed(3)
cv.carseats <- cv.tree(tree.carseats,FUN=prune.misclass)

135

names(cv.carseats)

[1] "size" "dev" "k" "method"
cv.carseats

$size
[1] 19 17 14 13 9 7 3 2 1
##
$dev
[1] 55 55 53 52 50 56 69 65 80
##
$k
[1] -Inf 0.0000000 0.6666667 1.0000000 1.7500000 2.0000000
[7] 4.2500000 5.0000000 23.0000000
##
$method
[1] "misclass"
##
attr(,"class")
[1] "prune" "tree.sequence"
Comment:
Function cv.tree() performs cross-validation to
determine the optimal level of tree complexity
cost complexity pruning is used in order to select
a sequence of trees for consideration.
We use the argument FUN=prune.misclass in order
to indicate that we want the classification
error rate to guide the cross-validation
and pruning process, rather than the default
for the cv.treee() function, which is
deviance.

Plot the erroras a function of size and k:
par(mfrow=c(1,2))
plot(cv.carseats$size,cv.carseats$dev,type="b")
plot(cv.carseats$k,cv.carseats$dev,type="b")

136

5 10 15

50
55

60
65

70
75

80

cv.carseats$size

cv
.c

ar
se

at
s$

de
v

0 5 10 15 20
50

55
60

65
70

75
80

cv.carseats$k

cv
.c

ar
se

at
s$

de
v

Pruning:
prune.carseats <- prune.misclass(tree.carseats, best=9)
plot(prune.carseats)
text(prune.carseats,pretty=0)

Predict:
tree.pred <- predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)

High.test
tree.pred No Yes
No 94 24
Yes 22 60
sum(diag(table(tree.pred,High.test)))/sum(table(tree.pred,High.test))

[1] 0.77
Increased best, would give lower classification accuracy:
prune.carseats <- prune.misclass(tree.carseats, best=15)
plot(prune.carseats)
text(prune.carseats,pretty=0)

137

|
ShelveLoc: Bad,Medium

Price < 142

ShelveLoc: Bad

Price < 86.5

Advertising < 6.5

Age < 37.5
CompPrice < 118.5

Price < 142.5

No

Yes

No
Yes

NoYes

NoYesNo

|
ShelveLoc: Bad,Medium

Price < 142

ShelveLoc: Bad

Income < 100Price < 86.5

Advertising < 6.5

Advertising < 1.5
CompPrice < 115.5

Age < 33.5
Price < 108.5

Age < 37.5
CompPrice < 118.5

Price < 142.5

Population < 278
Advertising < 10.5

Price < 99.5

NoYes
Yes

No
Yes

YesNo

No
YesNoYes

NoYes

YesNo
Yes

No

tree.pred <- predict(prune.carseats,Carseats.test,type="class")
table(tree.pred,High.test)

High.test
tree.pred No Yes
No 86 22
Yes 30 62
sum(diag(table(tree.pred,High.test)))/sum(table(tree.pred,High.test))

[1] 0.74

16.2 Fitting Regression Trees

library(MASS)
set.seed(1)
train <- sample(1:nrow(Boston),nrow(Boston)/2)
tree.boston <- tree(medv~.,Boston,subset=train)
summary(tree.boston)

##
Regression tree:
tree(formula = medv ~ ., data = Boston, subset = train)
Variables actually used in tree construction:
[1] "lstat" "rm" "dis"
Number of terminal nodes: 8

138

Residual mean deviance: 12.65 = 3099 / 245
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.10000 -2.04200 -0.05357 0.00000 1.96000 12.60000
Plot
plot(tree.boston)
text(tree.boston,pretty=0)

|lstat < 9.715

rm < 7.437

rm < 6.7815
dis < 2.6221

rm < 6.4755

lstat < 21.49

lstat < 14.48

37.40 22.54 26.84
32.05

46.38

21.04 17.16 11.10

Use cv.tree() function to see whether
pruning the tree will improve performance
cv.boston <- cv.tree(tree.boston)
plot(cv.boston$size,cv.boston$dev,type='b')

139

1 2 3 4 5 6 7 8

50
00

10
00

0
15

00
0

20
00

0

cv.boston$size

cv
.b

os
to

n$
de

v

Pruning
prune.boston <- prune.tree(tree.boston,best=5)
plot(prune.boston)
text(prune.boston,pretty=0)

140

|lstat < 9.715

rm < 7.437

rm < 6.7815

lstat < 21.49

25.52 32.05
46.38

19.16 11.10

Prediction:
yhat <- predict(tree.boston,newdata=Boston[-train,])
boston.test <- Boston[-train,"medv"]
plot(yhat,boston.test)
abline(0,1)

141

10 15 20 25 30 35 40 45

10
20

30
40

50

yhat

bo
st

on
.te

st

mean((yhat-boston.test)^2)

[1] 25.04559

16.3 Bagging and Random Forests

Here we apply bagging and random forests to
the Boston data, using the randomForest
package in R.

Package:
library(randomForest)

randomForest 4.6-12

Type rfNews() to see new features/changes/bug fixes.
set.seed(1)

Random Forest
bag.boston <- randomForest(medv~.,

data=Boston,subset=train,
mtry=13,importance=TRUE)

bag.boston

##
Call:

142

randomForest(formula = medv ~ ., data = Boston, mtry = 13, importance = TRUE, subset = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 13
##
Mean of squared residuals: 11.02509
% Var explained: 86.65
Comment:
mtry=13 indicates that all 13 predictors should be considered
for each split of the tree. That is, that bagging should
be done.

How well does it perform?
yhat.bag <- predict(bag.boston,newdata=Boston[-train,])
plot(yhat.bag, boston.test)
abline(0,1)

10 20 30 40 50

10
20

30
40

50

yhat.bag

bo
st

on
.te

st

mean((yhat.bag - boston.test)^2)

[1] 13.47349
MSE is a lot smaller.

Change randomForest() using the ntree argument:
bag.boston <- randomForest(medv~.,data=Boston,subset=train,

mtry=13,ntree=25)
yhat.bag <- predict(bag.boston,newdata=Boston[-train,])

143

mean((yhat.bag - boston.test)^2)

[1] 13.43068
Try mtry = 6:
set.seed(1)
rf.boston <- randomForest(medv~.,data=Boston,subset=train,

mtry=6,importance=TRUE)
yhat.rf <- predict(rf.boston,newdata=Boston[-train,])
mean((yhat.rf - boston.test)^2)

[1] 11.48022
We have another improvement.

Using importance() function to see
importance of each variable.
importance(rf.boston)

%IncMSE IncNodePurity
crim 12.547772 1094.65382
zn 1.375489 64.40060
indus 9.304258 1086.09103
chas 2.518766 76.36804
nox 12.835614 1008.73703
rm 31.646147 6705.02638
age 9.970243 575.13702
dis 12.774430 1351.01978
rad 3.911852 93.78200
tax 7.624043 453.19472
ptratio 12.008194 919.06760
black 7.376024 358.96935
lstat 27.666896 6927.98475
Plot these importance measures:
varImpPlot(rf.boston)

144

zn
chas
rad
black
tax
indus
age
ptratio
crim
dis
nox
lstat
rm

5 10 15 20 25 30
%IncMSE

zn
chas
rad
black
tax
age
ptratio
nox
indus
crim
dis
rm
lstat

0 2000 4000 6000
IncNodePurity

rf.boston

16.4 Boosting

We use gbm package
library(gbm)

Loading required package: survival

Loading required package: lattice

Loading required package: parallel

Loaded gbm 2.1.3
set.seed(1)
boost.boston <- gbm(medv~.,data=Boston[train,],

distribution="gaussian",
n.trees=5000,interaction.depth=4)

summary(boost.boston)

145

zn
in

du
s

bl
ac

k
cr

im
ls

ta
t

Relative influence

0 10 20 30 40

var rel.inf
lstat lstat 45.9627334
rm rm 31.2238187
dis dis 6.8087398
crim crim 4.0743784
nox nox 2.5605001
ptratio ptratio 2.2748652
black black 1.7971159
age age 1.6488532
tax tax 1.3595005
indus indus 1.2705924
chas chas 0.8014323
rad rad 0.2026619
zn zn 0.0148083
We see that lstat and rm are by far the most
important variables.
We can also produce partial dependence plots for
these two variables. These plots illustrate the
marginal effect of the selected variables
on the response after integrating out the other variables.

par(mfrow=c(1,2))
plot(boost.boston,i="rm")
plot(boost.boston,i="lstat")

146

4 5 6 7 8

22
24

26
28

30
32

rm

f(
rm

)

5 10 20 30
20

25
30

lstat

f(
ls

ta
t)

Test set:
yhat.boost <- predict(boost.boston, newdata=Boston[-train,],

n.trees=5000)
mean((yhat.boost - boston.test)^2)

[1] 11.84434
How to improve?
We can perform boosting with a different value of the shrinkage
parameter lambda . The default value is 0.001.
boost.boston <- gbm(medv~.,data=Boston[train,],

distribution="gaussian",n.trees=5000,
interaction.depth=4,shrinkage=0.2,
verbose=F)

yhat.boost <- predict(boost.boston,newdata=Boston[-train,],
n.trees=5000)

mean((yhat.boost - boston.test)^2)

[1] 11.51109
This change, lambda=0.2, leads to a slightly lower MSE.

147

17 Exercise 6

17.1 Neural Network

Source:
https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

Abstract:
Features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. They describe characteristics
of the cell nuclei present in the image. n the 3-dimensional
space is that described in:
[K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming
Discrimination of Two Linearly Inseparable Sets", Optimization Methods
and Software 1, 1992, 23-34].

Attribute Information:
1) ID number
2) Diagnosis (M = malignant, B = benign) 3-32)
Ten real-valued features are computed for each cell nucleus:
a) radius (mean of distances from center to points on the
perimeter)
b) texture (standard deviation of gray-scale values)
c) perimeter
d) area
e) smoothness (local variation in radius lengths)
f) compactness (perimeter^2 / area - 1.0)
g) concavity (severity
of concave portions of the contour)
h) concave points (number of concave portions of the
contour) i) symmetry j) fractal dimension
("coastline approximation" -
1) The mean, standard error and "worst" or largest (mean of the three
largest values) of these features were computed for each image,
resulting in 30 features. For instance, field 3 is Mean Radius,
field 13 is Radius SE, field 23 is Worst Radius.
All feature values are recoded with four significant digits.
Missing attribute values: none
Class distribution: 357 benign, 212 malignant

################# LOADING DATA ##########################

library('mxnet')

Init Rcpp
Load data:
all <- read.csv('F:/data_b_cancer/data.csv', header = TRUE)
all <- all[,-1] # Get rid of ID
colnames(all)[1] <- "Diagnosis"; head(all); dim(all); names(all)

Diagnosis radius_mean texture_mean perimeter_mean area_mean
1 M 17.99 10.38 122.80 1001.0
2 M 20.57 17.77 132.90 1326.0

148

3 M 19.69 21.25 130.00 1203.0
4 M 11.42 20.38 77.58 386.1
5 M 20.29 14.34 135.10 1297.0
6 M 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
1 0.11840 0.27760 0.3001 0.14710
2 0.08474 0.07864 0.0869 0.07017
3 0.10960 0.15990 0.1974 0.12790
4 0.14250 0.28390 0.2414 0.10520
5 0.10030 0.13280 0.1980 0.10430
6 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
1 0.2419 0.07871 1.0950 0.9053 8.589
2 0.1812 0.05667 0.5435 0.7339 3.398
3 0.2069 0.05999 0.7456 0.7869 4.585
4 0.2597 0.09744 0.4956 1.1560 3.445
5 0.1809 0.05883 0.7572 0.7813 5.438
6 0.2087 0.07613 0.3345 0.8902 2.217
area_se smoothness_se compactness_se concavity_se concave.points_se
1 153.40 0.006399 0.04904 0.05373 0.01587
2 74.08 0.005225 0.01308 0.01860 0.01340
3 94.03 0.006150 0.04006 0.03832 0.02058
4 27.23 0.009110 0.07458 0.05661 0.01867
5 94.44 0.011490 0.02461 0.05688 0.01885
6 27.19 0.007510 0.03345 0.03672 0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst
1 0.03003 0.006193 25.38 17.33
2 0.01389 0.003532 24.99 23.41
3 0.02250 0.004571 23.57 25.53
4 0.05963 0.009208 14.91 26.50
5 0.01756 0.005115 22.54 16.67
6 0.02165 0.005082 15.47 23.75
perimeter_worst area_worst smoothness_worst compactness_worst
1 184.60 2019.0 0.1622 0.6656
2 158.80 1956.0 0.1238 0.1866
3 152.50 1709.0 0.1444 0.4245
4 98.87 567.7 0.2098 0.8663
5 152.20 1575.0 0.1374 0.2050
6 103.40 741.6 0.1791 0.5249
concavity_worst concave.points_worst symmetry_worst
1 0.7119 0.2654 0.4601
2 0.2416 0.1860 0.2750
3 0.4504 0.2430 0.3613
4 0.6869 0.2575 0.6638
5 0.4000 0.1625 0.2364
6 0.5355 0.1741 0.3985
fractal_dimension_worst
1 0.11890
2 0.08902
3 0.08758
4 0.17300
5 0.07678
6 0.12440

149

[1] 569 31

[1] "Diagnosis" "radius_mean"
[3] "texture_mean" "perimeter_mean"
[5] "area_mean" "smoothness_mean"
[7] "compactness_mean" "concavity_mean"
[9] "concave.points_mean" "symmetry_mean"
[11] "fractal_dimension_mean" "radius_se"
[13] "texture_se" "perimeter_se"
[15] "area_se" "smoothness_se"
[17] "compactness_se" "concavity_se"
[19] "concave.points_se" "symmetry_se"
[21] "fractal_dimension_se" "radius_worst"
[23] "texture_worst" "perimeter_worst"
[25] "area_worst" "smoothness_worst"
[27] "compactness_worst" "concavity_worst"
[29] "concave.points_worst" "symmetry_worst"
[31] "fractal_dimension_worst"
Create Dummies:
all$Diagnosis <- ifelse(all$Diagnosis == "M", 1, 0)
head(all); dim(all); names(all) # Check!

Diagnosis radius_mean texture_mean perimeter_mean area_mean
1 1 17.99 10.38 122.80 1001.0
2 1 20.57 17.77 132.90 1326.0
3 1 19.69 21.25 130.00 1203.0
4 1 11.42 20.38 77.58 386.1
5 1 20.29 14.34 135.10 1297.0
6 1 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
1 0.11840 0.27760 0.3001 0.14710
2 0.08474 0.07864 0.0869 0.07017
3 0.10960 0.15990 0.1974 0.12790
4 0.14250 0.28390 0.2414 0.10520
5 0.10030 0.13280 0.1980 0.10430
6 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
1 0.2419 0.07871 1.0950 0.9053 8.589
2 0.1812 0.05667 0.5435 0.7339 3.398
3 0.2069 0.05999 0.7456 0.7869 4.585
4 0.2597 0.09744 0.4956 1.1560 3.445
5 0.1809 0.05883 0.7572 0.7813 5.438
6 0.2087 0.07613 0.3345 0.8902 2.217
area_se smoothness_se compactness_se concavity_se concave.points_se
1 153.40 0.006399 0.04904 0.05373 0.01587
2 74.08 0.005225 0.01308 0.01860 0.01340
3 94.03 0.006150 0.04006 0.03832 0.02058
4 27.23 0.009110 0.07458 0.05661 0.01867
5 94.44 0.011490 0.02461 0.05688 0.01885
6 27.19 0.007510 0.03345 0.03672 0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst
1 0.03003 0.006193 25.38 17.33
2 0.01389 0.003532 24.99 23.41
3 0.02250 0.004571 23.57 25.53

150

4 0.05963 0.009208 14.91 26.50
5 0.01756 0.005115 22.54 16.67
6 0.02165 0.005082 15.47 23.75
perimeter_worst area_worst smoothness_worst compactness_worst
1 184.60 2019.0 0.1622 0.6656
2 158.80 1956.0 0.1238 0.1866
3 152.50 1709.0 0.1444 0.4245
4 98.87 567.7 0.2098 0.8663
5 152.20 1575.0 0.1374 0.2050
6 103.40 741.6 0.1791 0.5249
concavity_worst concave.points_worst symmetry_worst
1 0.7119 0.2654 0.4601
2 0.2416 0.1860 0.2750
3 0.4504 0.2430 0.3613
4 0.6869 0.2575 0.6638
5 0.4000 0.1625 0.2364
6 0.5355 0.1741 0.3985
fractal_dimension_worst
1 0.11890
2 0.08902
3 0.08758
4 0.17300
5 0.07678
6 0.12440

[1] 569 31

[1] "Diagnosis" "radius_mean"
[3] "texture_mean" "perimeter_mean"
[5] "area_mean" "smoothness_mean"
[7] "compactness_mean" "concavity_mean"
[9] "concave.points_mean" "symmetry_mean"
[11] "fractal_dimension_mean" "radius_se"
[13] "texture_se" "perimeter_se"
[15] "area_se" "smoothness_se"
[17] "compactness_se" "concavity_se"
[19] "concave.points_se" "symmetry_se"
[21] "fractal_dimension_se" "radius_worst"
[23] "texture_worst" "perimeter_worst"
[25] "area_worst" "smoothness_worst"
[27] "compactness_worst" "concavity_worst"
[29] "concave.points_worst" "symmetry_worst"
[31] "fractal_dimension_worst"
Shuffle:
#all <- all[sample(nrow(all), nrow(all)),]
#head(all); dim(all); names(all)

################# NEURO NETWORK ##########################

All entries take 0 and 1:
all.copy <- all
for (i in 1:nrow(all.copy)){

for (j in 1:ncol(all.copy)){
all.copy[i,j] <- ifelse(all.copy[i,j] <= mean(all.copy[,j]),0,1)

151

}
#print(cbind("Done with", i))

}; head(all.copy); all <- all.copy

Diagnosis radius_mean texture_mean perimeter_mean area_mean
1 1 1 0 1 1
2 1 1 0 1 1
3 1 1 1 1 1
4 1 0 1 0 0
5 1 1 0 1 1
6 1 0 0 0 0
smoothness_mean compactness_mean concavity_mean concave.points_mean
1 1 1 1 1
2 0 0 0 1
3 1 1 1 1
4 1 1 1 1
5 0 1 1 1
6 1 1 1 1
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
1 1 1 1 0 1
2 0 0 1 0 1
3 1 0 1 0 1
4 1 1 1 0 1
5 0 0 1 0 1
6 1 1 0 0 0
area_se smoothness_se compactness_se concavity_se concave.points_se
1 1 0 1 1 1
2 1 0 0 0 0
3 1 0 1 1 1
4 0 1 1 1 1
5 1 1 0 1 1
6 0 0 1 0 0
symmetry_se fractal_dimension_se radius_worst texture_worst
1 1 1 1 0
2 0 0 1 0
3 1 0 1 0
4 1 1 0 1
5 0 0 1 0
6 0 0 0 0
perimeter_worst area_worst smoothness_worst compactness_worst
1 1 1 1 1
2 1 1 0 0
3 1 1 1 1
4 0 0 1 1
5 1 1 1 0
6 0 0 1 1
concavity_worst concave.points_worst symmetry_worst
1 1 1 1
2 0 1 0
3 1 1 1
4 1 1 1
5 1 1 0
6 1 1 1
fractal_dimension_worst

152

1 1
2 1
3 1
4 1
5 0
6 1
Replace NA entry with 0:
all[is.na(all)] <- 0; head(all); dim(all)

Split:
train <- all[1:(0.8*nrow(all)),]; dim(train) # Training set

[1] 455 31
test <- all[(0.8*nrow(all)+1):nrow(all),]; dim(test) # Testing set

[1] 113 31
Identify Response and Explanatory:
train.x <- train[,-1]; dim(train.x)

[1] 455 30
train.y <- train[,1]; head(train.y)

[1] 1 1 1 1 1 1
test.x <- test[,-1]; dim(test.x)

[1] 113 30
test.y <- test[,1]; dim(data.frame(test.y))

[1] 113 1
Transpose:
train.x <- t(train.x)
test.x <- t(test.x)

Parameters:
a1 <- 128+4*256 # LeCun: 128
a2 <- 64+4*128 # LeCun: 64
a3 <- 32+4*0 # LeCun: 10
a4 <- 10
iter <- 30

Configure Network:

data <- mx.symbol.Variable("data")
In mxnet, we use the data type symbol
to configure the network.
data <- mx.symbol.Variable("data")
uses data to represent the input
data, i.e., the input layer.
fc1 <- mx.symbol.FullyConnected(data, name="fc1", num_hidden=a1) # 1:128; 2:300; 3:400
We set the first hidden
layer with fc1 <- mx.symbol.FullyConnected(data, name="fc1", num_hidden=128).
This layer has data as the input,

153

its name, and the number of hidden neurons.
act1 <- mx.symbol.Activation(fc1, name="relu1", act_type="relu")
Activation is set with
act1 <- mx.symbol.Activation(fc1, name="relu1", act_type="relu").
The activation function takes the output from the first hidden layer, fc1.
fc2 <- mx.symbol.FullyConnected(act1, name="fc2", num_hidden=a2) #1: 64, 2: 200
The second hidden layer takes the
result from act1 as input, with
its name as "fc2" and the number
of hidden neurons as 64.
act2 <- mx.symbol.Activation(fc2, name="relu2", act_type="relu")
The second activation is almost
the same as act1, except we
have a different input source and name.
fc3 <- mx.symbol.FullyConnected(act2, name="fc3", num_hidden=a3) #1: 10, 2:100
This generates the output layer.
Because there are only 10
digits, we set the number of neurons to 10.
act3 <- mx.symbol.Activation(fc3, name="relu3", act_type="relu")
The third activation is almost the same as act3,
except different layers.
fc4 <- mx.symbol.FullyConnected(act3, name="fc4", num_hidden=a4)
This generates output layer.
softmax <- mx.symbol.SoftmaxOutput(fc4, name="sm")
Finally, we set the activation
to softmax to get a probabilistic prediction.

Training:
We are almost ready for the training process.
Before we start the computation, let's decide which device to use:
devices <- mx.cpu()
We assign CPU to mxnet.
Now, you can run the following command
to train the neural network!

Note that mx.set.seed is the function
that controls the random process in mxnet:

mx.set.seed(0)
model <- mx.model.FeedForward.create(

softmax, X=train.x, y=train.y,
ctx=devices, num.round=iter,
array.batch.size=100,
learning.rate=0.1, momentum=0.9,
eval.metric=mx.metric.accuracy,
initializer=mx.init.uniform(0.07),
epoch.end.callback=mx.callback.log.train.metric(100)
epoch.end.callback=mx.callback.plot.train.metric(100, logger)

)

Warning in mx.model.select.layout.train(X, y): Auto detect layout input matrix, use colmajor..

Start training with 1 devices
[1] Train-accuracy=0.4575

154

[2] Train-accuracy=0.596
[3] Train-accuracy=0.614
[4] Train-accuracy=0.61
[5] Train-accuracy=0.8
[6] Train-accuracy=0.854
[7] Train-accuracy=0.906
[8] Train-accuracy=0.888
[9] Train-accuracy=0.93
[10] Train-accuracy=0.894
[11] Train-accuracy=0.908
[12] Train-accuracy=0.938
[13] Train-accuracy=0.92
[14] Train-accuracy=0.924
[15] Train-accuracy=0.938
[16] Train-accuracy=0.928
[17] Train-accuracy=0.928
[18] Train-accuracy=0.928
[19] Train-accuracy=0.942
[20] Train-accuracy=0.938
[21] Train-accuracy=0.936
[22] Train-accuracy=0.926
[23] Train-accuracy=0.93
[24] Train-accuracy=0.946
[25] Train-accuracy=0.942
[26] Train-accuracy=0.934
[27] Train-accuracy=0.93
[28] Train-accuracy=0.936
[29] Train-accuracy=0.948
[30] Train-accuracy=0.948
Make prediction:
preds <- predict(model, test.x)

Warning in mx.model.select.layout.predict(X, model): Auto detect layout input matrix, use colmajor..
It is a matrix
containing the desired classification
probabilities from the output layer.
To extract the maximum label for each row, use max.col:

pred.label <- max.col(t(preds)) - 1
table(pred.label, test.y)

test.y
pred.label 0 1
0 83 7
1 4 19
percent <- sum(diag(table(pred.label, test.y)))/sum(table(pred.label, test.y))
percent; 1-percent

[1] 0.9026549

[1] 0.09734513

155

17.2 Convolutional Neural Network

################# CNN #################################

Load data:
all <- read.csv('F:/data_b_cancer/data.csv', header = TRUE)
all <- all[,-1] # Get rid of ID
colnames(all)[1] <- "Diagnosis"; head(all); dim(all); names(all)

Diagnosis radius_mean texture_mean perimeter_mean area_mean
1 M 17.99 10.38 122.80 1001.0
2 M 20.57 17.77 132.90 1326.0
3 M 19.69 21.25 130.00 1203.0
4 M 11.42 20.38 77.58 386.1
5 M 20.29 14.34 135.10 1297.0
6 M 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
1 0.11840 0.27760 0.3001 0.14710
2 0.08474 0.07864 0.0869 0.07017
3 0.10960 0.15990 0.1974 0.12790
4 0.14250 0.28390 0.2414 0.10520
5 0.10030 0.13280 0.1980 0.10430
6 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
1 0.2419 0.07871 1.0950 0.9053 8.589
2 0.1812 0.05667 0.5435 0.7339 3.398
3 0.2069 0.05999 0.7456 0.7869 4.585
4 0.2597 0.09744 0.4956 1.1560 3.445
5 0.1809 0.05883 0.7572 0.7813 5.438
6 0.2087 0.07613 0.3345 0.8902 2.217
area_se smoothness_se compactness_se concavity_se concave.points_se
1 153.40 0.006399 0.04904 0.05373 0.01587
2 74.08 0.005225 0.01308 0.01860 0.01340
3 94.03 0.006150 0.04006 0.03832 0.02058
4 27.23 0.009110 0.07458 0.05661 0.01867
5 94.44 0.011490 0.02461 0.05688 0.01885
6 27.19 0.007510 0.03345 0.03672 0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst
1 0.03003 0.006193 25.38 17.33
2 0.01389 0.003532 24.99 23.41
3 0.02250 0.004571 23.57 25.53
4 0.05963 0.009208 14.91 26.50
5 0.01756 0.005115 22.54 16.67
6 0.02165 0.005082 15.47 23.75
perimeter_worst area_worst smoothness_worst compactness_worst
1 184.60 2019.0 0.1622 0.6656
2 158.80 1956.0 0.1238 0.1866
3 152.50 1709.0 0.1444 0.4245
4 98.87 567.7 0.2098 0.8663
5 152.20 1575.0 0.1374 0.2050
6 103.40 741.6 0.1791 0.5249
concavity_worst concave.points_worst symmetry_worst
1 0.7119 0.2654 0.4601
2 0.2416 0.1860 0.2750

156

3 0.4504 0.2430 0.3613
4 0.6869 0.2575 0.6638
5 0.4000 0.1625 0.2364
6 0.5355 0.1741 0.3985
fractal_dimension_worst
1 0.11890
2 0.08902
3 0.08758
4 0.17300
5 0.07678
6 0.12440

[1] 569 31

[1] "Diagnosis" "radius_mean"
[3] "texture_mean" "perimeter_mean"
[5] "area_mean" "smoothness_mean"
[7] "compactness_mean" "concavity_mean"
[9] "concave.points_mean" "symmetry_mean"
[11] "fractal_dimension_mean" "radius_se"
[13] "texture_se" "perimeter_se"
[15] "area_se" "smoothness_se"
[17] "compactness_se" "concavity_se"
[19] "concave.points_se" "symmetry_se"
[21] "fractal_dimension_se" "radius_worst"
[23] "texture_worst" "perimeter_worst"
[25] "area_worst" "smoothness_worst"
[27] "compactness_worst" "concavity_worst"
[29] "concave.points_worst" "symmetry_worst"
[31] "fractal_dimension_worst"
Create Dummies:
all$Diagnosis <- ifelse(all$Diagnosis == "M", 1, 0)
head(all); dim(all); names(all) # Check!

Diagnosis radius_mean texture_mean perimeter_mean area_mean
1 1 17.99 10.38 122.80 1001.0
2 1 20.57 17.77 132.90 1326.0
3 1 19.69 21.25 130.00 1203.0
4 1 11.42 20.38 77.58 386.1
5 1 20.29 14.34 135.10 1297.0
6 1 12.45 15.70 82.57 477.1
smoothness_mean compactness_mean concavity_mean concave.points_mean
1 0.11840 0.27760 0.3001 0.14710
2 0.08474 0.07864 0.0869 0.07017
3 0.10960 0.15990 0.1974 0.12790
4 0.14250 0.28390 0.2414 0.10520
5 0.10030 0.13280 0.1980 0.10430
6 0.12780 0.17000 0.1578 0.08089
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
1 0.2419 0.07871 1.0950 0.9053 8.589
2 0.1812 0.05667 0.5435 0.7339 3.398
3 0.2069 0.05999 0.7456 0.7869 4.585
4 0.2597 0.09744 0.4956 1.1560 3.445
5 0.1809 0.05883 0.7572 0.7813 5.438
6 0.2087 0.07613 0.3345 0.8902 2.217

157

area_se smoothness_se compactness_se concavity_se concave.points_se
1 153.40 0.006399 0.04904 0.05373 0.01587
2 74.08 0.005225 0.01308 0.01860 0.01340
3 94.03 0.006150 0.04006 0.03832 0.02058
4 27.23 0.009110 0.07458 0.05661 0.01867
5 94.44 0.011490 0.02461 0.05688 0.01885
6 27.19 0.007510 0.03345 0.03672 0.01137
symmetry_se fractal_dimension_se radius_worst texture_worst
1 0.03003 0.006193 25.38 17.33
2 0.01389 0.003532 24.99 23.41
3 0.02250 0.004571 23.57 25.53
4 0.05963 0.009208 14.91 26.50
5 0.01756 0.005115 22.54 16.67
6 0.02165 0.005082 15.47 23.75
perimeter_worst area_worst smoothness_worst compactness_worst
1 184.60 2019.0 0.1622 0.6656
2 158.80 1956.0 0.1238 0.1866
3 152.50 1709.0 0.1444 0.4245
4 98.87 567.7 0.2098 0.8663
5 152.20 1575.0 0.1374 0.2050
6 103.40 741.6 0.1791 0.5249
concavity_worst concave.points_worst symmetry_worst
1 0.7119 0.2654 0.4601
2 0.2416 0.1860 0.2750
3 0.4504 0.2430 0.3613
4 0.6869 0.2575 0.6638
5 0.4000 0.1625 0.2364
6 0.5355 0.1741 0.3985
fractal_dimension_worst
1 0.11890
2 0.08902
3 0.08758
4 0.17300
5 0.07678
6 0.12440

[1] 569 31

[1] "Diagnosis" "radius_mean"
[3] "texture_mean" "perimeter_mean"
[5] "area_mean" "smoothness_mean"
[7] "compactness_mean" "concavity_mean"
[9] "concave.points_mean" "symmetry_mean"
[11] "fractal_dimension_mean" "radius_se"
[13] "texture_se" "perimeter_se"
[15] "area_se" "smoothness_se"
[17] "compactness_se" "concavity_se"
[19] "concave.points_se" "symmetry_se"
[21] "fractal_dimension_se" "radius_worst"
[23] "texture_worst" "perimeter_worst"
[25] "area_worst" "smoothness_worst"
[27] "compactness_worst" "concavity_worst"
[29] "concave.points_worst" "symmetry_worst"
[31] "fractal_dimension_worst"

158

Set up:
all <- data.frame(

all,
matrix(0,nrow=nrow(all),ncol=((round(sqrt(ncol(all))))^2 - ncol(all) +1))

); dim(all)

[1] 569 37
Load train and test datasets
train <- all[1:(0.8*nrow(all)),]; dim(train) # Training set

[1] 455 37
test <- all[(0.8*nrow(all)+1):nrow(all),]; dim(test) # Testing set

[1] 113 37
Set up train and test datasets
train <- data.matrix(train)
train_x <- t(train[, -1])
train_y <- train[, 1]
train_array <- train_x
size <- round(sqrt(nrow(train_x)))
dim(train_array) <- c(size, size, 1, ncol(train_x))

test_x <- t(test[, -1])
test_y <- test[, 1]
test_array <- test_x
dim(test_array) <- c(size, size, 1, ncol(test_x))

Set up the symbolic model
data <- mx.symbol.Variable('data')
conv_1 <- mx.symbol.Convolution(data = data, kernel = c(3,3), num_filter = 200)
tanh_1 <- mx.symbol.Activation(data = conv_1, act_type = "tanh")
pool_1 <- mx.symbol.Pooling(data = tanh_1, pool_type = "max", kernel = c(2,2), stride = c(2, 2))
2nd convolutional layer
conv_2 <- mx.symbol.Convolution(data = pool_1, kernel = c(1,1), num_filter = 100)
tanh_2 <- mx.symbol.Activation(data = conv_2, act_type = "tanh")
pool_2 <- mx.symbol.Pooling(data=tanh_2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2))
1st fully connected layer
flatten <- mx.symbol.Flatten(data = pool_2)
fc_1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = 100) # LeCun: 500
tanh_3 <- mx.symbol.Activation(data = fc_1, act_type = "tanh")
2nd fully connected layer
fc_2 <- mx.symbol.FullyConnected(data = tanh_3, num_hidden = 100)
Output. Softmax output since we'd like to get some probabilities.
NN_model <- mx.symbol.SoftmaxOutput(data = fc_2)

Pre-training set up:
Set seed for reproducibility
mx.set.seed(100)

Device used. CPU in my case.
devices <- mx.cpu()

Training

159

iter <- 20

Train the model
model <- mx.model.FeedForward.create(

NN_model,
X = train_array,
y = train_y,
ctx = devices,
num.round = iter, # LeCun 480
array.batch.size = 40,
learning.rate = 0.01,
momentum = 0.9,
eval.metric = mx.metric.accuracy,
epoch.end.callback = mx.callback.log.train.metric(100)

)

Start training with 1 devices
[1] Train-accuracy=0.538636363636364
[2] Train-accuracy=0.585416666666667
[3] Train-accuracy=0.585416666666667
[4] Train-accuracy=0.585416666666667
[5] Train-accuracy=0.585416666666667
[6] Train-accuracy=0.53125
[7] Train-accuracy=0.49375
[8] Train-accuracy=0.49375
[9] Train-accuracy=0.497916666666667
[10] Train-accuracy=0.497916666666667
[11] Train-accuracy=0.51875
[12] Train-accuracy=0.51875
[13] Train-accuracy=0.51875
[14] Train-accuracy=0.51875
[15] Train-accuracy=0.51875
[16] Train-accuracy=0.51875
[17] Train-accuracy=0.520833333333333
[18] Train-accuracy=0.579166666666667
[19] Train-accuracy=0.63125
[20] Train-accuracy=0.664583333333333
Testing:
Predict labels
predicted <- predict(model, test_array)
Assign labels
predicted_labels <- max.col(t(predicted)) - 1

table(predicted_labels, test_y)

test_y
predicted_labels 0 1
0 87 16
1 0 10
percent <- sum(diag(table(predicted_labels, test_y)))/sum(table(predicted_labels, test_y))
percent; 1-percent

[1] 0.8584071

160

[1] 0.1415929

161

18 Homework 1

18.1 Problem 1

A classifier, say f , is a mapping from a feature space X = Rd to label space Y. The loss of this classifier
using 0-1 loss is defined as the following:

L(ŷ, y) = 1{ŷ 6= y} = PXY (f(X) 6= Y).

The risk, the expected value of the loss function, is defined as

R(f) = E[L(f(X), Y)] = E[1{f(X)6=Y }] = P (f(X) 6= Y)

Given from lecture, we define Bayes’ Classifier to be the following mapping:

f∗(x) =
{

1, η(x) ≥ 1/2
0, otherwise

where η(x) ≡ PY |X(Y = 1|X = x).The goal is to prove the statement: Bayes classifier is the optimal classifier
than any other classifier.

Proof:

Let f : X → Y be any classifier. We want to show that R(f)−R(f∗) ≥ 0, i.e. the Bayes classifier performs
better than any other classifiers.

Following definition, we have

R(f)−R(f∗) = P (f(X) 6= Y)− P (f∗(X) 6= Y)
=

∫
(P (f(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x))p(x)dx

and it is sufficient to prove the argument by proving P (f(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x) ≥ 0.
Starting with the following, for any f , we have

P (f(X) 6= Y |X = x) = 1− P (f(X) = Y |X = x)
= 1− [P (Y = 1, f(X) = 1|X = x) + P (Y = 0, f(X) = 0|X = x)]
= 1− [E(1{Y = 1}1{f(X) = 1}|X = x) + E(1{Y = 0}1{f(X) = 0}|X = x)]
= 1− [1{f(X) = 1}P (Y = 1|X = x) + 1{f(X) = 0}P (Y = 0|X = x)]
= 1− [1{f(X) = 1}η(x) + 1{f(X) = 0}(1− η(x))],∀f

and we know that for Bayes, f∗(X) scenario takes the same format. Hence, we have the following

R(f)−R(f∗) =
∫

(P (f(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x))p(x)dx
= 1− [1{f(X) = 1}η(x) + 1{f(X) = 0}(1− η(x))]
−{1− [1{f∗(X) = 1}η(x) + 1{f∗(X) = 0}(1− η(x))]}

= η(x)[1{f∗(X) = 1} − 1{f(X) = 1}] + (1− η(x))[1{f∗(X) = 0} − 1{f(X) = 0}]
= η(x)[1{f∗(X) = 1} − 1{f(X) = 1}] + (η(x)− 1)[1{f∗(X) = 1} − 1{f(X) = 1}]
= (η(x) + η(x)− 1)[1{f∗(X) = 1} − 1{f(X) = 1}]
= (2η(x)− 1)[1{f∗(X) = 1} − 1{f(X) = 1}]

and we discuss the following cases

162

{
(2η(x)− 1)[1{f∗(X) = 1} − 1{f(X) = 1}] ≥ 0, if η(x) ≥ 1/2 since all components are greater or equal to zero
(2η(x)− 1)[1{f∗(X) = 1} − 1{f(X) = 1}] ≥ 0, if η(x) < 1/2 since all components are less or equal to zero

This, therefore, implies that R(f)−R(f∗) ≥ 0.

�

18.2 Problem 2

18.2.1 1. Download Data

We want to download 30 stocks of DJIA with closing prices for every trading day from Jan. 1 2010 to Jan. 1,
2011.
Use Quantmod to download data:
install.packages('quantmod')
require('quantmod')

Loading required package: quantmod

Loading required package: xts

Loading required package: zoo

##
Attaching package: 'zoo'

The following objects are masked from 'package:base':
##
as.Date, as.Date.numeric

Loading required package: TTR

Version 0.4-0 included new data defaults. See ?getSymbols.
Download and save all 30 companies in a vector called "data":
"data" simply stores the name of 30 companies.
data<-getSymbols(

c(
"AAPL", "AXP", "BA", "CAT", "CSCO",
"CVX", "DD", "DIS", "GE", "GS",
"HD", "IBM", "INTC", "JNJ", "JPM",
"KO", "MCD", "MMM", "MRK", "MSFT",
"NKE", "PFE", "PG", "TRV", "UNH",
"UTX", "V", "VZ", "WMT", "XOM"

),
src="google",
from=as.Date("2010-01-01"),
to=as.Date("2011-04-04")

); length(data)

As of 0.4-0, 'getSymbols' uses env=parent.frame() and
auto.assign=TRUE by default.
##
This behavior will be phased out in 0.5-0 when the call will
default to use auto.assign=FALSE. getOption("getSymbols.env") and

163

getOptions("getSymbols.auto.assign") are now checked for alternate defaults
##
This message is shown once per session and may be disabled by setting
options("getSymbols.warning4.0"=FALSE). See ?getSymbols for more details.

[1] 30
As an example:
head(AAPL) # AAPL is a vector that gives five different information about this company.

AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume
2010-01-04 30.49 30.64 30.34 30.57 123432050
2010-01-05 30.66 30.80 30.46 30.63 150476004
2010-01-06 30.63 30.75 30.11 30.14 138039594
2010-01-07 30.25 30.29 29.86 30.08 119282324
2010-01-08 30.04 30.29 29.87 30.28 111969081
2010-01-11 30.40 30.43 29.78 30.02 115557365
For example, say AAPL:
head(AAPL[,4]) # Check that the 4th column is closing price

AAPL.Close
2010-01-04 30.57
2010-01-05 30.63
2010-01-06 30.14
2010-01-07 30.08
2010-01-08 30.28
2010-01-11 30.02
data <- data.frame(data); dim(data)

[1] 30 1
closing_mat <- data.frame(

cbind(
AAPL[,4], AXP[,4], BA[,4], CAT[,4], CSCO[,4],
CVX[,4], DD[,4], DIS[,4], GE[,4], GS[,4],
HD[,4], IBM[,4], INTC[,4], JNJ[,4], JPM[,4],
KO[,4], MCD[,4], MMM[,4], MRK[,4], MSFT[,4],
NKE[,4], PFE[,4], PG[,4], TRV[,4], UNH[,4],
UTX[,4], V[,4], VZ[,4], WMT[,4], XOM[,4]

)
); dim(closing_mat) # This is a matrix of all closing price for 30 companies.

[1] 316 30

18.2.2 2. PCA on Prices (cor = “”)

We perform PCA on prices and create biplot
PCA:
?princomp # To read and to understand the function
head(closing_mat); dim(closing_mat)

AAPL.Close AXP.Close BA.Close CAT.Close CSCO.Close CVX.Close
2010-01-04 30.57 40.92 56.18 58.55 24.69 79.06
2010-01-05 30.63 40.83 58.02 59.25 24.58 79.62
2010-01-06 30.14 41.49 59.78 59.43 24.42 79.63

164

2010-01-07 30.08 41.98 62.20 59.67 24.53 79.33
2010-01-08 30.28 41.95 61.60 60.34 24.66 79.47
2010-01-11 30.02 41.47 60.87 64.13 24.59 80.88
DD.Close DIS.Close GE.Close GS.Close HD.Close IBM.Close
2010-01-04 34.26 32.07 15.45 173.08 28.67 132.45
2010-01-05 33.93 31.99 15.53 176.14 28.88 130.85
2010-01-06 34.04 31.82 15.45 174.26 28.78 130.00
2010-01-07 34.39 31.83 16.25 177.67 29.12 129.55
2010-01-08 33.94 31.88 16.60 174.31 28.98 130.85
2010-01-11 34.26 31.36 16.76 171.56 28.16 129.48
INTC.Close JNJ.Close JPM.Close KO.Close MCD.Close MMM.Close
2010-01-04 20.88 64.68 42.85 28.52 62.78 83.02
2010-01-05 20.87 63.93 43.68 28.18 62.30 82.50
2010-01-06 20.80 64.45 43.92 28.16 61.45 83.67
2010-01-07 20.60 63.99 44.79 28.10 61.90 83.73
2010-01-08 20.83 64.21 44.68 27.58 61.84 84.32
2010-01-11 20.95 64.22 44.53 28.14 62.32 83.98
MRK.Close MSFT.Close NKE.Close PFE.Close PG.Close TRV.Close
2010-01-04 37.01 30.95 16.34 18.93 61.12 49.81
2010-01-05 37.16 30.96 16.40 18.66 61.14 48.63
2010-01-06 37.66 30.77 16.30 18.60 60.85 47.94
2010-01-07 37.72 30.45 16.46 18.53 60.52 48.63
2010-01-08 37.70 30.66 16.43 18.68 60.44 48.56
2010-01-11 37.85 30.27 16.23 18.83 60.20 48.54
UNH.Close UTX.Close V.Close VZ.Close WMT.Close XOM.Close
2010-01-04 31.53 71.63 22.04 33.28 54.23 69.15
2010-01-05 31.48 70.56 21.78 33.34 53.69 69.42
2010-01-06 31.79 70.19 21.49 31.92 53.57 70.02
2010-01-07 33.01 70.49 21.69 31.73 53.60 69.80
2010-01-08 32.70 70.63 21.75 31.75 53.33 69.52
2010-01-11 32.92 72.16 21.69 31.88 54.21 70.30

[1] 316 30
pc <- princomp(na.omit(closing_mat), cor=FALSE)
summary(pc)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 28.3724866 11.7654938 5.56807822 4.74678845
Proportion of Variance 0.7756353 0.1333777 0.02987263 0.02171013
Cumulative Proportion 0.7756353 0.9090129 0.93888557 0.96059571
Comp.5 Comp.6 Comp.7 Comp.8
Standard deviation 3.119792031 2.732214453 2.283856104 2.076552918
Proportion of Variance 0.009378082 0.007192706 0.005025743 0.004154787
Cumulative Proportion 0.969973788 0.977166495 0.982192237 0.986347024
Comp.9 Comp.10 Comp.11 Comp.12
Standard deviation 1.609704046 1.50371442 1.209215752 1.136287494
Proportion of Variance 0.002496634 0.00217868 0.001408868 0.001244054
Cumulative Proportion 0.988843658 0.99102234 0.992431206 0.993675260
Comp.13 Comp.14 Comp.15 Comp.16
Standard deviation 1.104842826 1.020725410 0.883062002 0.8058509989
Proportion of Variance 0.001176153 0.001003877 0.000751355 0.0006257088
Cumulative Proportion 0.994851413 0.995855290 0.996606645 0.9972323541
Comp.17 Comp.18 Comp.19 Comp.20

165

Standard deviation 0.7022425359 0.6645263232 0.6069514453 0.5292862973
Proportion of Variance 0.0004751569 0.0004254878 0.0003549528 0.0002699256
Cumulative Proportion 0.9977075110 0.9981329988 0.9984879517 0.9987578773
Comp.21 Comp.22 Comp.23 Comp.24
Standard deviation 0.5047136440 0.4761181275 0.4051941761 0.3832435809
Proportion of Variance 0.0002454442 0.0002184199 0.0001581937 0.0001415183
Cumulative Proportion 0.9990033215 0.9992217414 0.9993799351 0.9995214534
Comp.25 Comp.26 Comp.27 Comp.28
Standard deviation 0.3585348426 0.3249492043 3.005122e-01 2.732095e-01
Proportion of Variance 0.0001238584 0.0001017405 8.701354e-05 7.192077e-05
Cumulative Proportion 0.9996453118 0.9997470522 9.998341e-01 9.999060e-01
Comp.29 Comp.30
Standard deviation 2.545529e-01 1.810394e-01
Proportion of Variance 6.243368e-05 3.157976e-05
Cumulative Proportion 9.999684e-01 1.000000e+00
plot(pc)

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

pc

V
ar

ia
nc

es

0
20

0
40

0
60

0
80

0

biplot(pc, cex=.3)

166

−0.10 0.00 0.05 0.10 0.15

−
0.

10
0.

00
0.

05
0.

10
0.

15

Comp.1

C
om

p.
2

2010−01−04

2010−01−05
2010−01−06

2010−01−07

2010−01−08

2010−01−11

2010−01−12
2010−01−132010−01−14

2010−01−15
2010−01−19

2010−01−20

2010−01−21

2010−01−222010−01−25

2010−01−26
2010−01−27

2010−01−28

2010−01−29

2010−02−01

2010−02−022010−02−03

2010−02−04

2010−02−05

2010−02−08
2010−02−09
2010−02−102010−02−112010−02−12

2010−02−162010−02−17
2010−02−182010−02−192010−02−222010−02−23
2010−02−24

2010−02−252010−02−262010−03−01

2010−03−02
2010−03−03

2010−03−04

2010−03−05

2010−03−08
2010−03−09

2010−03−10
2010−03−11
2010−03−12

2010−03−15

2010−03−162010−03−17
2010−03−182010−03−19

2010−03−22
2010−03−232010−03−242010−03−25

2010−03−26
2010−03−29

2010−03−302010−03−31
2010−04−052010−04−06

2010−04−07

2010−04−082010−04−09
2010−04−12
2010−04−13

2010−04−14
2010−04−15

2010−04−16

2010−04−19

2010−04−20
2010−04−212010−04−22

2010−04−23

2010−04−26
2010−04−27

2010−04−28

2010−04−29

2010−04−30

2010−05−032010−05−04
2010−05−05

2010−05−06
2010−05−072010−05−10

2010−05−11

2010−05−12

2010−05−13
2010−05−142010−05−17

2010−05−18

2010−05−19

2010−05−20

2010−05−21

2010−05−24

2010−05−25

2010−05−26

2010−05−27
2010−05−28

2010−06−01

2010−06−022010−06−03

2010−06−04

2010−06−072010−06−08
2010−06−09

2010−06−10
2010−06−11

2010−06−14

2010−06−152010−06−162010−06−17
2010−06−182010−06−21

2010−06−222010−06−232010−06−24

2010−06−25

2010−06−28

2010−06−29

2010−06−302010−07−012010−07−02
2010−07−06

2010−07−072010−07−08

2010−07−092010−07−12

2010−07−13
2010−07−14

2010−07−152010−07−162010−07−19

2010−07−20

2010−07−212010−07−22
2010−07−23

2010−07−26
2010−07−272010−07−28

2010−07−29

2010−07−30

2010−08−022010−08−03

2010−08−042010−08−05
2010−08−062010−08−09
2010−08−10

2010−08−112010−08−12
2010−08−132010−08−162010−08−172010−08−18

2010−08−19
2010−08−20

2010−08−23

2010−08−242010−08−25

2010−08−26

2010−08−27

2010−08−302010−08−31

2010−09−012010−09−02

2010−09−03

2010−09−07

2010−09−08

2010−09−09
2010−09−10

2010−09−13
2010−09−142010−09−152010−09−16

2010−09−172010−09−20
2010−09−21

2010−09−22

2010−09−23
2010−09−24

2010−09−272010−09−28
2010−09−292010−09−30

2010−10−01
2010−10−04

2010−10−05
2010−10−062010−10−07

2010−10−082010−10−11

2010−10−122010−10−13

2010−10−14
2010−10−15

2010−10−18

2010−10−19

2010−10−202010−10−21
2010−10−222010−10−25
2010−10−26
2010−10−27

2010−10−28

2010−10−292010−11−01
2010−11−022010−11−03

2010−11−04

2010−11−05

2010−11−08

2010−11−092010−11−102010−11−11
2010−11−12
2010−11−15

2010−11−162010−11−17

2010−11−18
2010−11−19

2010−11−22

2010−11−23

2010−11−24

2010−11−26
2010−11−29

2010−11−30

2010−12−01

2010−12−022010−12−032010−12−06
2010−12−07

2010−12−082010−12−09

2010−12−102010−12−13

2010−12−14

2010−12−15
2010−12−162010−12−17
2010−12−20

2010−12−21
2010−12−22
2010−12−23

2010−12−272010−12−28
2010−12−292010−12−302010−12−31

2011−01−03
2011−01−042011−01−05
2011−01−06
2011−01−07

2011−01−102011−01−11

2011−01−122011−01−13

2011−01−142011−01−18

2011−01−192011−01−20
2011−01−21

2011−01−24

2011−01−25
2011−01−26

2011−01−27

2011−01−28
2011−01−31

2011−02−012011−02−022011−02−032011−02−04

2011−02−07
2011−02−08

2011−02−09
2011−02−102011−02−11

2011−02−142011−02−15
2011−02−16
2011−02−172011−02−18

2011−02−222011−02−232011−02−24
2011−02−25

2011−02−28
2011−03−012011−03−02

2011−03−03

2011−03−04
2011−03−07

2011−03−08
2011−03−09

2011−03−102011−03−11

2011−03−14
2011−03−15

2011−03−16
2011−03−17

2011−03−182011−03−212011−03−22
2011−03−232011−03−24

2011−03−25
2011−03−28

2011−03−292011−03−302011−03−31
2011−04−01
2011−04−04

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

AAPL.Close

AXP.Close
BA.Close

CAT.Close

CSCO.Close

CVX.Close

DD.Close

DIS.Close
GE.Close

GS.Close

HD.Close

IBM.Close

INTC.Close

JNJ.CloseJPM.Close

KO.Close

MCD.Close

MMM.Close

MRK.Close
MSFT.Close

NKE.Close
PFE.ClosePG.Close

TRV.CloseUNH.Close

UTX.CloseV.Close

VZ.Close

WMT.Close
XOM.Close

Formula interface
princomp(~., data = closing_mat)

Call:
princomp(formula = ~., data = closing_mat)
##
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
28.3724866 11.7654938 5.5680782 4.7467885 3.1197920 2.7322145
Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12
2.2838561 2.0765529 1.6097040 1.5037144 1.2092158 1.1362875
Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18
1.1048428 1.0207254 0.8830620 0.8058510 0.7022425 0.6645263
Comp.19 Comp.20 Comp.21 Comp.22 Comp.23 Comp.24
0.6069514 0.5292863 0.5047136 0.4761181 0.4051942 0.3832436
Comp.25 Comp.26 Comp.27 Comp.28 Comp.29 Comp.30
0.3585348 0.3249492 0.3005122 0.2732095 0.2545529 0.1810394
##
30 variables and 315 observations.

18.2.3 3. PCA on Prices (cor = TRUE)

We perform PCA on prices and create biplot
PCA:
?princomp # To read and to understand the function

167

head(closing_mat); dim(closing_mat)

AAPL.Close AXP.Close BA.Close CAT.Close CSCO.Close CVX.Close
2010-01-04 30.57 40.92 56.18 58.55 24.69 79.06
2010-01-05 30.63 40.83 58.02 59.25 24.58 79.62
2010-01-06 30.14 41.49 59.78 59.43 24.42 79.63
2010-01-07 30.08 41.98 62.20 59.67 24.53 79.33
2010-01-08 30.28 41.95 61.60 60.34 24.66 79.47
2010-01-11 30.02 41.47 60.87 64.13 24.59 80.88
DD.Close DIS.Close GE.Close GS.Close HD.Close IBM.Close
2010-01-04 34.26 32.07 15.45 173.08 28.67 132.45
2010-01-05 33.93 31.99 15.53 176.14 28.88 130.85
2010-01-06 34.04 31.82 15.45 174.26 28.78 130.00
2010-01-07 34.39 31.83 16.25 177.67 29.12 129.55
2010-01-08 33.94 31.88 16.60 174.31 28.98 130.85
2010-01-11 34.26 31.36 16.76 171.56 28.16 129.48
INTC.Close JNJ.Close JPM.Close KO.Close MCD.Close MMM.Close
2010-01-04 20.88 64.68 42.85 28.52 62.78 83.02
2010-01-05 20.87 63.93 43.68 28.18 62.30 82.50
2010-01-06 20.80 64.45 43.92 28.16 61.45 83.67
2010-01-07 20.60 63.99 44.79 28.10 61.90 83.73
2010-01-08 20.83 64.21 44.68 27.58 61.84 84.32
2010-01-11 20.95 64.22 44.53 28.14 62.32 83.98
MRK.Close MSFT.Close NKE.Close PFE.Close PG.Close TRV.Close
2010-01-04 37.01 30.95 16.34 18.93 61.12 49.81
2010-01-05 37.16 30.96 16.40 18.66 61.14 48.63
2010-01-06 37.66 30.77 16.30 18.60 60.85 47.94
2010-01-07 37.72 30.45 16.46 18.53 60.52 48.63
2010-01-08 37.70 30.66 16.43 18.68 60.44 48.56
2010-01-11 37.85 30.27 16.23 18.83 60.20 48.54
UNH.Close UTX.Close V.Close VZ.Close WMT.Close XOM.Close
2010-01-04 31.53 71.63 22.04 33.28 54.23 69.15
2010-01-05 31.48 70.56 21.78 33.34 53.69 69.42
2010-01-06 31.79 70.19 21.49 31.92 53.57 70.02
2010-01-07 33.01 70.49 21.69 31.73 53.60 69.80
2010-01-08 32.70 70.63 21.75 31.75 53.33 69.52
2010-01-11 32.92 72.16 21.69 31.88 54.21 70.30

[1] 316 30
pc <- princomp(na.omit(closing_mat), cor = TRUE)
summary(pc)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 4.1243249 2.4043963 1.46324939 1.2742680 0.87725345
Proportion of Variance 0.5670019 0.1927041 0.07136996 0.0541253 0.02565245
Cumulative Proportion 0.5670019 0.7597059 0.83107589 0.8852012 0.91085365
Comp.6 Comp.7 Comp.8 Comp.9
Standard deviation 0.79625421 0.61814142 0.58452373 0.497162769
Proportion of Variance 0.02113403 0.01273663 0.01138893 0.008239027
Cumulative Proportion 0.93198767 0.94472430 0.95611323 0.964352259
Comp.10 Comp.11 Comp.12 Comp.13
Standard deviation 0.449065971 0.413757446 0.36776909 0.328794824
Proportion of Variance 0.006722008 0.005706507 0.00450847 0.003603535

168

Cumulative Proportion 0.971074267 0.976780775 0.98128925 0.984892780
Comp.14 Comp.15 Comp.16 Comp.17
Standard deviation 0.284580982 0.241605993 0.229765359 0.217367596
Proportion of Variance 0.002699545 0.001945782 0.001759737 0.001574956
Cumulative Proportion 0.987592324 0.989538106 0.991297843 0.992872799
Comp.18 Comp.19 Comp.20 Comp.21
Standard deviation 0.198765625 0.193123560 0.1603428985 0.1540532115
Proportion of Variance 0.001316926 0.001243224 0.0008569948 0.0007910797
Cumulative Proportion 0.994189725 0.995432948 0.9962899433 0.9970810230
Comp.22 Comp.23 Comp.24 Comp.25
Standard deviation 0.1295486920 0.1267251639 0.1152138867 0.1081783324
Proportion of Variance 0.0005594288 0.0005353089 0.0004424747 0.0003900851
Cumulative Proportion 0.9976404518 0.9981757607 0.9986182354 0.9990083204
Comp.26 Comp.27 Comp.28 Comp.29
Standard deviation 0.0970264279 0.089130465 0.0716860474 0.0658462908
Proportion of Variance 0.0003138043 0.000264808 0.0001712963 0.0001445245
Cumulative Proportion 0.9993221247 0.999586933 0.9997582290 0.9999027535
Comp.30
Standard deviation 5.401293e-02
Proportion of Variance 9.724655e-05
Cumulative Proportion 1.000000e+00
plot(pc)

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

pc

V
ar

ia
nc

es

0
5

10
15

biplot(pc, cex=.3)

169

−0.10 0.00 0.05 0.10

−
0.

10
0.

00
0.

05
0.

10

Comp.1

C
om

p.
2

2010−01−042010−01−052010−01−062010−01−072010−01−082010−01−11
2010−01−12

2010−01−13

2010−01−14

2010−01−15

2010−01−19
2010−01−20

2010−01−21

2010−01−222010−01−25
2010−01−26

2010−01−27
2010−01−28

2010−01−29

2010−02−01

2010−02−02
2010−02−03

2010−02−04
2010−02−05

2010−02−08

2010−02−092010−02−10
2010−02−112010−02−12

2010−02−16
2010−02−17

2010−02−182010−02−192010−02−22

2010−02−23

2010−02−24
2010−02−252010−02−26

2010−03−012010−03−022010−03−03

2010−03−04

2010−03−052010−03−082010−03−09
2010−03−10

2010−03−112010−03−12
2010−03−15

2010−03−16
2010−03−172010−03−18

2010−03−19
2010−03−22

2010−03−23

2010−03−242010−03−25
2010−03−26

2010−03−292010−03−30
2010−03−31

2010−04−052010−04−06
2010−04−07

2010−04−08
2010−04−092010−04−122010−04−13

2010−04−142010−04−15

2010−04−16
2010−04−19
2010−04−20

2010−04−212010−04−22
2010−04−23

2010−04−26

2010−04−27
2010−04−28

2010−04−29

2010−04−30

2010−05−03

2010−05−042010−05−05

2010−05−06

2010−05−07

2010−05−10
2010−05−11

2010−05−12

2010−05−13

2010−05−142010−05−17

2010−05−182010−05−19

2010−05−20

2010−05−21

2010−05−242010−05−25

2010−05−26

2010−05−27

2010−05−28
2010−06−01

2010−06−02
2010−06−03

2010−06−04

2010−06−07

2010−06−08
2010−06−09

2010−06−102010−06−112010−06−14

2010−06−15
2010−06−16

2010−06−172010−06−18
2010−06−21

2010−06−222010−06−23

2010−06−24
2010−06−252010−06−28

2010−06−29

2010−06−302010−07−012010−07−02
2010−07−06

2010−07−07

2010−07−08
2010−07−09
2010−07−12

2010−07−13
2010−07−142010−07−15

2010−07−16
2010−07−19

2010−07−20

2010−07−21

2010−07−22

2010−07−23
2010−07−262010−07−27
2010−07−28
2010−07−29
2010−07−30

2010−08−02
2010−08−032010−08−04

2010−08−052010−08−06
2010−08−09

2010−08−10

2010−08−11

2010−08−12
2010−08−13
2010−08−16

2010−08−172010−08−18

2010−08−192010−08−202010−08−23

2010−08−242010−08−25

2010−08−26
2010−08−27

2010−08−30
2010−08−31

2010−09−01
2010−09−02

2010−09−03

2010−09−072010−09−08
2010−09−092010−09−10

2010−09−13
2010−09−14

2010−09−152010−09−16
2010−09−17

2010−09−202010−09−212010−09−22

2010−09−23

2010−09−24
2010−09−272010−09−28
2010−09−29
2010−09−302010−10−01
2010−10−04

2010−10−05
2010−10−062010−10−07

2010−10−082010−10−112010−10−12
2010−10−13
2010−10−14
2010−10−15

2010−10−18

2010−10−19

2010−10−20
2010−10−212010−10−222010−10−252010−10−262010−10−27
2010−10−282010−10−29
2010−11−01

2010−11−02
2010−11−03

2010−11−042010−11−05
2010−11−08

2010−11−09
2010−11−10

2010−11−11

2010−11−122010−11−15

2010−11−16
2010−11−17

2010−11−182010−11−19

2010−11−22

2010−11−23

2010−11−24

2010−11−262010−11−29

2010−11−30

2010−12−01

2010−12−022010−12−032010−12−062010−12−07

2010−12−08
2010−12−09

2010−12−102010−12−13
2010−12−14
2010−12−15

2010−12−162010−12−172010−12−202010−12−212010−12−222010−12−232010−12−272010−12−282010−12−292010−12−302010−12−31

2011−01−03

2011−01−042011−01−05
2011−01−06
2011−01−07
2011−01−10

2011−01−11

2011−01−12
2011−01−132011−01−142011−01−18

2011−01−19

2011−01−202011−01−21
2011−01−242011−01−25

2011−01−262011−01−27

2011−01−28
2011−01−31

2011−02−012011−02−022011−02−03
2011−02−04

2011−02−07
2011−02−08

2011−02−09

2011−02−102011−02−112011−02−14
2011−02−15

2011−02−162011−02−17
2011−02−18

2011−02−22

2011−02−23
2011−02−242011−02−252011−02−28

2011−03−012011−03−02

2011−03−03

2011−03−04

2011−03−07

2011−03−082011−03−09

2011−03−10
2011−03−11

2011−03−14

2011−03−15

2011−03−16

2011−03−17

2011−03−18

2011−03−212011−03−222011−03−23

2011−03−24
2011−03−252011−03−28

2011−03−29

2011−03−30

2011−03−312011−04−01
2011−04−04

−15 −5 0 5 10 15

−
15

−
5

0
5

10
15

AAPL.Close

AXP.Close

BA.Close

CAT.Close

CSCO.Close

CVX.Close

DD.Close

DIS.Close

GE.Close

GS.Close

HD.Close

IBM.Close

INTC.Close

JNJ.Close

JPM.Close

KO.Close

MCD.Close

MMM.Close

MRK.Close

MSFT.Close

NKE.Close

PFE.Close

PG.Close

TRV.Close

UNH.Close

UTX.Close

V.Close

VZ.Close

WMT.Close

XOM.Close

Comment: using cor=TRUE is setting the function to
calculate principle component using correlation
or covariance matrix. Observe the graph in the follow.
It gives us better visualization of how the first
and the second principle components affect V.

Formula interface
princomp(~., data = closing_mat, cor = TRUE)

Call:
princomp(formula = ~., data = closing_mat, cor = TRUE)
##
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
4.12432493 2.40439635 1.46324939 1.27426804 0.87725345 0.79625421
Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12
0.61814142 0.58452373 0.49716277 0.44906597 0.41375745 0.36776909
Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18
0.32879482 0.28458098 0.24160599 0.22976536 0.21736760 0.19876562
Comp.19 Comp.20 Comp.21 Comp.22 Comp.23 Comp.24
0.19312356 0.16034290 0.15405321 0.12954869 0.12672516 0.11521389
Comp.25 Comp.26 Comp.27 Comp.28 Comp.29 Comp.30
0.10817833 0.09702643 0.08913047 0.07168605 0.06584629 0.05401293
##
30 variables and 315 observations.

170

18.2.4 4. Return Analysis

Define return of a stock at a particular day, say day2, to be (closing price of day 2 - closing price of day
1)/closing price of day 1). Then we repeat part 4.
Compute return matrix
head(closing_mat,3); dim(closing_mat)

AAPL.Close AXP.Close BA.Close CAT.Close CSCO.Close CVX.Close
2010-01-04 30.57 40.92 56.18 58.55 24.69 79.06
2010-01-05 30.63 40.83 58.02 59.25 24.58 79.62
2010-01-06 30.14 41.49 59.78 59.43 24.42 79.63
DD.Close DIS.Close GE.Close GS.Close HD.Close IBM.Close
2010-01-04 34.26 32.07 15.45 173.08 28.67 132.45
2010-01-05 33.93 31.99 15.53 176.14 28.88 130.85
2010-01-06 34.04 31.82 15.45 174.26 28.78 130.00
INTC.Close JNJ.Close JPM.Close KO.Close MCD.Close MMM.Close
2010-01-04 20.88 64.68 42.85 28.52 62.78 83.02
2010-01-05 20.87 63.93 43.68 28.18 62.30 82.50
2010-01-06 20.80 64.45 43.92 28.16 61.45 83.67
MRK.Close MSFT.Close NKE.Close PFE.Close PG.Close TRV.Close
2010-01-04 37.01 30.95 16.34 18.93 61.12 49.81
2010-01-05 37.16 30.96 16.40 18.66 61.14 48.63
2010-01-06 37.66 30.77 16.30 18.60 60.85 47.94
UNH.Close UTX.Close V.Close VZ.Close WMT.Close XOM.Close
2010-01-04 31.53 71.63 22.04 33.28 54.23 69.15
2010-01-05 31.48 70.56 21.78 33.34 53.69 69.42
2010-01-06 31.79 70.19 21.49 31.92 53.57 70.02

[1] 316 30
return_mat <- matrix(0, nrow=315, ncol=ncol(closing_mat))
for (j in 1:ncol(closing_mat)){

Ex: j <- 1
unit_return <- diff(closing_mat[,j])/lag(closing_mat[-1,][,j])
return_mat[,j] <- unit_return

}; head(return_mat, 3); dim(return_mat)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.001958864 -0.002204262 0.03171320 0.011814346 -0.004475183
[2,] -0.016257465 0.015907448 0.02944128 0.003028773 -0.006552007
[3,] -0.001994681 0.011672225 0.03890675 0.004022122 0.004484305
[,6] [,7] [,8] [,9] [,10]
[1,] 0.0070334087 -0.009725906 -0.002500781 0.005151320 0.01737254
[2,] 0.0001255808 0.003231492 -0.005342552 -0.005177994 -0.01078848
[3,] -0.0037816715 0.010177377 0.000314169 0.049230769 0.01919289
[,11] [,12] [,13] [,14] [,15]
[1,] 0.007271468 -0.012227742 -0.0004791567 -0.011731581 0.019001832
[2,] -0.003474635 -0.006538462 -0.0033653846 0.008068270 0.005464481
[3,] 0.011675824 -0.003473562 -0.0097087379 -0.007188623 0.019423979
[,16] [,17] [,18] [,19] [,20]
[1,] -0.0120652945 -0.007704655 -0.006303030 0.004036598 0.0003229974
[2,] -0.0007102273 -0.013832384 0.013983507 0.013276686 -0.0061748456
[3,] -0.0021352313 0.007269790 0.000716589 0.001590668 -0.0105090312
[,21] [,22] [,23] [,24] [,25]
[1,] 0.003658537 -0.014469453 0.0003271181 -0.02426486 -0.001588310

171

[2,] -0.006134969 -0.003225806 -0.0047658176 -0.01439299 0.009751494
[3,] 0.009720535 -0.003777658 -0.0054527429 0.01418877 0.036958497
[,26] [,27] [,28] [,29] [,30]
[1,] -0.015164399 -0.011937557 0.001799640 -0.0100577389 0.003889369
[2,] -0.005271406 -0.013494649 -0.044486216 -0.0022400597 0.008568980
[3,] 0.004255923 0.009220839 -0.005988024 0.0005597015 -0.003151862

[1] 315 30
PCA:
names(return_mat) <- c(

"AAPL", "AXP", "BA", "CAT", "CSCO",
"CVX", "DD", "DIS", "GE", "GS",
"HD", "IBM", "INTC", "JNJ", "JPM",
"KO", "MCD", "MMM", "MRK", "MSFT",
"NKE", "PFE", "PG", "TRV", "UNH",
"UTX", "V", "VZ", "WMT", "XOM"

)
head(return_mat, 3); dim(return_mat)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.001958864 -0.002204262 0.03171320 0.011814346 -0.004475183
[2,] -0.016257465 0.015907448 0.02944128 0.003028773 -0.006552007
[3,] -0.001994681 0.011672225 0.03890675 0.004022122 0.004484305
[,6] [,7] [,8] [,9] [,10]
[1,] 0.0070334087 -0.009725906 -0.002500781 0.005151320 0.01737254
[2,] 0.0001255808 0.003231492 -0.005342552 -0.005177994 -0.01078848
[3,] -0.0037816715 0.010177377 0.000314169 0.049230769 0.01919289
[,11] [,12] [,13] [,14] [,15]
[1,] 0.007271468 -0.012227742 -0.0004791567 -0.011731581 0.019001832
[2,] -0.003474635 -0.006538462 -0.0033653846 0.008068270 0.005464481
[3,] 0.011675824 -0.003473562 -0.0097087379 -0.007188623 0.019423979
[,16] [,17] [,18] [,19] [,20]
[1,] -0.0120652945 -0.007704655 -0.006303030 0.004036598 0.0003229974
[2,] -0.0007102273 -0.013832384 0.013983507 0.013276686 -0.0061748456
[3,] -0.0021352313 0.007269790 0.000716589 0.001590668 -0.0105090312
[,21] [,22] [,23] [,24] [,25]
[1,] 0.003658537 -0.014469453 0.0003271181 -0.02426486 -0.001588310
[2,] -0.006134969 -0.003225806 -0.0047658176 -0.01439299 0.009751494
[3,] 0.009720535 -0.003777658 -0.0054527429 0.01418877 0.036958497
[,26] [,27] [,28] [,29] [,30]
[1,] -0.015164399 -0.011937557 0.001799640 -0.0100577389 0.003889369
[2,] -0.005271406 -0.013494649 -0.044486216 -0.0022400597 0.008568980
[3,] 0.004255923 0.009220839 -0.005988024 0.0005597015 -0.003151862

[1] 315 30
ret.pc <- princomp(na.omit(return_mat), cor = TRUE)
summary(ret.pc)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 3.8707234 1.1876754 1.07292952 0.99137358 0.9542861
Proportion of Variance 0.4994166 0.0470191 0.03837259 0.03276072 0.0303554
Cumulative Proportion 0.4994166 0.5464357 0.58480834 0.61756906 0.6479245
Comp.6 Comp.7 Comp.8 Comp.9

172

Standard deviation 0.87968107 0.8577325 0.84788132 0.80317836
Proportion of Variance 0.02579463 0.0245235 0.02396342 0.02150318
Cumulative Proportion 0.67371908 0.6982426 0.72220600 0.74370919
Comp.10 Comp.11 Comp.12 Comp.13
Standard deviation 0.79274340 0.76413727 0.73537579 0.70397704
Proportion of Variance 0.02094807 0.01946353 0.01802592 0.01651946
Cumulative Proportion 0.76465726 0.78412078 0.80214670 0.81866616
Comp.14 Comp.15 Comp.16 Comp.17
Standard deviation 0.69652957 0.69136189 0.6702859 0.65200137
Proportion of Variance 0.01617178 0.01593271 0.0149761 0.01417019
Cumulative Proportion 0.83483794 0.85077065 0.8657468 0.87991694
Comp.18 Comp.19 Comp.20 Comp.21
Standard deviation 0.62401472 0.62224893 0.60150949 0.57860049
Proportion of Variance 0.01297981 0.01290646 0.01206046 0.01115928
Cumulative Proportion 0.89289676 0.90580321 0.91786367 0.92902295
Comp.22 Comp.23 Comp.24 Comp.25
Standard deviation 0.56775069 0.542324649 0.537944584 0.514064709
Proportion of Variance 0.01074469 0.009803868 0.009646146 0.008808751
Cumulative Proportion 0.93976765 0.949571516 0.959217662 0.968026412
Comp.26 Comp.27 Comp.28 Comp.29
Standard deviation 0.502507035 0.465574070 0.444256418 0.407924386
Proportion of Variance 0.008417111 0.007225307 0.006578792 0.005546743
Cumulative Proportion 0.976443523 0.983668830 0.990247622 0.995794366
Comp.30
Standard deviation 0.355202789
Proportion of Variance 0.004205634
Cumulative Proportion 1.000000000
plot(ret.pc)

173

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

ret.pc

V
ar

ia
nc

es

0
2

4
6

8
10

12
14

biplot(ret.pc, cex=.5)

174

−0.2 −0.1 0.0 0.1 0.2

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Comp.1

C
om

p.
2

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1920

21

22

23 24

25

26
27

28

29 30
31

32
33

34
35

36
37

38
39
40

41

42

4344

45

46
47

48

49
5051

52

53

54

55

56

57
58

59

60

61 62

63

64
65

66

67
68

69

70

7172
7374

75

76

77

78

79

80 81

82

83

84

85

86
87

88

89
90

91

92

93

94

95

96
97

98

99

100
101

102

103

104
105

106
107

108

109

110

111

112

113
114

115116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134
135

136

137

138

139
140

141

142

143

144

145

146
147148

149

150

151152
153

154

155 156
157

158

159

160 161
162

163
164

165

166

167

168

169170
171

172

173
174175

176
177

178
179

180
181

182

183

184

185186

187
188

189

190

191192

193

194

195196

197

198

199

200

201
202203

204

205

206

207

208

209

210

211

212

213

214

215216
217

218

219
220 221 222

223
224

225

226

227

228

229

230

231

232

233

234
235

236

237 238

239

240

241

242243

244

245

246247
248

249250

251252
253

254
255256

257 258

259
260

261

262

263

264

265

266

267

268269

270
271

272
273

274

275

276

277

278

279

280

281

282

283

284285

286

287

288

289

290291

292
293

294

295

296

297
298 299

300

301

302

303

304305

306
307

308

309

310 311312

313

−15 −5 0 5 10 15

−
15

−
5

0
5

10
15

Var 1

Var 2

Var 3

Var 4
Var 5

Var 6
Var 7

Var 8Var 9

Var 10

Var 11

Var 12

Var 13

Var 14

Var 15

Var 16

Var 17

Var 18Var 19Var 20
Var 21
Var 22

Var 23

Var 24

Var 25
Var 26

Var 27

Var 28

Var 29

Var 30

Comment: Now all 30 vectors are skewed towards (or close)
to x-axis a lot more than the previous graph shown.

175

19 Homework 2

19.1 Problem 1

(a) Sketch Curve (1 +X1)2 + (2−X2)2 = 4. We simplify the curve

(1 +X1)2 + (2−X2)2 = 4
(2−X2)2 = 4− (1 +X1)2

2−X2 =
√

4− (1 +X1)2

X2 = 2−
√

4− (1 +X1)2

Plot the curve based on the above equation,
Treat x.2 as a function of x.1:
x.1 <- seq(0,1,0.01)
x.2 <- 2 - (4 - (1+x.1)^2)^(1/2)
plot(x.1, x.2, cex=.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

x.1

x.
2

(b) Indicate
x.1 <- seq(0,1,0.01)
x.2 <- 2 - (4 - (1+x.1)^2)^(1/2)
plot(x.1, x.2, cex=.5, xlim = c(0,1.2), ylim = c(0,1.5))
points(0.4, 1.2, pch = "*", col = "purple")
text(0.3, 1.2, "Area Less than 4", cex = 1.5)
text(0.8, 0.4, "Area Greater than 4", cex = 1.5)

176

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

x.1

x.
2

Area Less than 4

Area Greater than 4

Comment:
The curve, designed in the problem, is a classifier
to differentiate the value of the equation to be
less than or greater than 4.

(c) Suppose a classifier assigns an observation to a blue class

(1 +X1)2 + (2−X2)2 > 4

and to the red class otherwise. To what class are the observations (0, 0), (−1,−1), (2, 2), or (3, 8) classified?
From (b), we have:
x.1 <- seq(-1.5,1.5,0.01)
x.2 <- 2 - (4 - (1+x.1)^2)^(1/2)
plot(x.1, x.2, cex=.5, xlim = c(-1.5,3.5), ylim = c(-1.5,8.5))
points(0.4, 1.2, pch = "*", col = "purple")
text(0.3, 4, "Area Less than 4", cex = 1.5)
text(2, 0.4, "Area Greater than 4", cex = 1.5)
Comment:
The curve, designed in the problem, is a classifier
to differentiate the value of the equation to be
less than or greater than 4.

For this problem, part (c), we simply add these
points back to the graph:
text(0,0,"Point(0,0)",pch="*",col="Blue")
text(-1,1,"Point(-1,1)",pch="*",col="Red")

177

text(2,2,"Point(2,2)",pch="*",col="Blue")
text(3,8,"Point(3,8)",pch="*",col="Blue")

−1 0 1 2 3

0
2

4
6

8

x.1

x.
2 Area Less than 4

Area Greater than 4Point(0,0)

Point(−1,1)

Point(2,2)

Point(3,8)

Check math for sure:
1+0+2^2 > 4

[1] TRUE
(1-1)^2+(2-1)^2 > 4

[1] FALSE
(1+2)^2+(2-2)^2 > 4

[1] TRUE
(1+3)^2 + (2-8)^2 > 4

[1] TRUE
Comment:
To visualize this problem, we lie the points
on the plot and we observe that all four points
lie in the area that is greater than 4.

(d) Arguement for Linear vs Non-linear Decision Boundary

178

19.2 Problem 2

In this problem, we apply SVM to classify hand-written digits. We use R package “e1071” for SVM coding.
Load Data set:
require('e1071')
setwd("F://Course/CU Stats/STATS W4241(S) - Statistical Machine Learning/6. Homework/HW2")
train.5 <- as.matrix(read.table("train.5.txt", header = F, sep = ",")); dim(train.5)

[1] 556 256
train.6 <- as.matrix((read.table("train.6.txt", header = F, sep = ","))); dim(train.6)

[1] 664 256
Read dimensions:
556x256 for digit 5
664x256 for digit 6

Label "5" as -1, and "6" as 1:
explanatory <- rbind(

train.5,
train.6

); dim(explanatory)

[1] 1220 256
response <- rbind(

matrix(-1,nrow=556,ncol=1),
matrix(1,nrow=664,ncol=1)

); dim(response)

[1] 1220 1
Create dataset:
data <- cbind(response,explanatory); dim(data)

[1] 1220 257
data <- data[sample(nrow(data), nrow(data)),]; dim(data)

[1] 1220 257
Set 80% training 20% testing:
train <- data[1:(.8*nrow(data)),]
test <- data[(.8*nrow(data)+1):nrow(data),]

SVM:
I wrote a function called manual.tune, that is,
it is a function allowing me to enter different
parameters: cost = c, gamma = g:
manual.tune <- function(c,g){

Apply SVM
Ex: c<-1; g<-1
svm.fit <- svm(

formula = train[,1] ~.,
data = train[,-1],
type = "C-classification",
kernel = "linear",

179

cost=c,
gamma=g
)

Now we predict by the model above:
pred <- predict(

svm.fit,
newdata = data.frame(test)

)

Visualize:
table <- table(predict=pred, truth=test[,1])
roc <- plot.roc(pred, data.test$DRIVER, col="green")

Compute coverage:
cover.percentile <- sum(diag(table))/sum(table)

Return:
return(list(

Summary = summary(svm.fit),
Table = table,
Accuracy = cover.percentile))

}
End of function

Ex:
manual.tune(2,1)

$Summary
##
Call:
svm(formula = train[, 1] ~ ., data = train[, -1], type = "C-classification",
kernel = "linear", cost = c, gamma = g)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
cost: 2
gamma: 1
##
Number of Support Vectors: 82
##
(39 43)
##
##
Number of Classes: 2
##
Levels:
-1 1
##
##
##
##

180

$Table
truth
predict -1 1
-1 107 133
1 4 0
##
$Accuracy
[1] 0.4385246

19.2.1 (a) Cross-Validation (Linear)

Here we test Linear case:
Parameters:
start <- 2; end <- 4; incre <- 1
range.cost <- seq(start,end,incre); range.gammma <- seq(start,end,incre)
range.cost; range.gammma

Cross Validation Table: (empty for now)
cv.table <- matrix(NA,nrow=length(range.cost),ncol=length(range.gammma))
cv.table

Fill in Cross Validation Table:
for (i in 1:length(range.cost)) {

for (j in 1:length(range.gammma)){
cv.table[i,j] <- manual.tune(range.cost[[i]],range.gammma[[i]])[[3]]

}
}
rownames(cv.table) <- range.cost; colnames(cv.table) <- range.gammma
cv.table # Final Output here.

2 3 4
2 0.4385246 0.4385246 0.4385246
3 0.4385246 0.4385246 0.4385246
4 0.4385246 0.4385246 0.4385246
3D Plot:
#scatterplot3d::scatterplot3d(
range.cost, xlab = "Cost",
range.gammma, ylab = "Gammma",
cv.table[,1], main = "Testing Accuracy via Cost and Gammma",
pch = 18,
col.grid = "purple"
)

Comment:
We start with Parameters and we set different start and end values as well
as different increment for tuning. Tuning methods take the following
procedure:
1) Start with a random range;
2) Pick one that give the highest;
3) Take that coordinate of cost and gamma;
4) Decrease range by 1/10 and
change increment to 1/10th of the one before.

181

19.2.2 (b) Cross-Validation (Non-Linear)

SVM:
I wrote a function called manual.tune, that is,
it is a function allowing me to enter different
parameters: cost = c, gamma = g:

Now we change kernal = "radial" instead of linear
manual.tune <- function(c,g){

Apply SVM
Ex: c<-1; g<-1
svm.fit <- svm(

formula = train[,1] ~.,
data = train[,-1],
type = "C-classification",
kernel = "sigmoid",
cost=c,
gamma=g
)

Now we predict by the model above:
pred <- predict(

svm.fit,
newdata = data.frame(test)

)

Visualize:
table <- table(predict=pred, truth=test[,1])
roc <- plot.roc(pred, data.test$DRIVER, col="green")

Compute coverage:
cover.percentile <- sum(diag(table))/sum(table)

Return:
return(list(

Summary = summary(svm.fit),
Table = table,
Accuracy = cover.percentile))

}
End of function

Ex:
manual.tune(2,1)

$Summary
##
Call:
svm(formula = train[, 1] ~ ., data = train[, -1], type = "C-classification",
kernel = "sigmoid", cost = c, gamma = g)
##
##
Parameters:
SVM-Type: C-classification
SVM-Kernel: sigmoid

182

cost: 2
gamma: 1
coef.0: 0
##
Number of Support Vectors: 202
##
(101 101)
##
##
Number of Classes: 2
##
Levels:
-1 1
##
##
##
##
$Table
truth
predict -1 1
-1 91 23
1 20 110
##
$Accuracy
[1] 0.8237705
Parameters:
start <- 2; end <- 4; incre <- 1
range.cost <- seq(start,end,incre); range.gammma <- seq(start,end,incre)
range.cost; range.gammma

Cross Validation Table: (empty for now)
cv.table <- matrix(NA,nrow=length(range.cost),ncol=length(range.gammma))
cv.table

Fill in Cross Validation Table:
for (i in 1:length(range.cost)) {

for (j in 1:length(range.gammma)){
cv.table[i,j] <- manual.tune(range.cost[[i]],range.gammma[[i]])[[3]]

}
}
rownames(cv.table) <- range.cost; colnames(cv.table) <- range.gammma
cv.table # Final Output here.

2 3 4
2 0.8278689 0.8278689 0.8278689
3 0.8237705 0.8237705 0.8237705
4 0.8237705 0.8237705 0.8237705
3D Plot:
#scatterplot3d::scatterplot3d(
range.cost, xlab = "Cost",
range.gammma, ylab = "Gammma",
cv.table[,1], main = "Testing Accuracy via Cost and Gammma",
pch = 18,

183

col.grid = "purple"
)

Comment:
We start with Parameters and we set different start and end values as well
as different increment for tuning. Tuning methods take the following
procedure:
1) Start with a random range;
2) Pick one that give the highest;
3) Take that coordinate of cost and gamma;
4) Decrease range by 1/10 and
change increment to 1/10th of the one before.

Linear model is the highest. As additional practice, we use linear model to test full dataset.

20 Homework 3

20.1 Problem 1

Ridge Regression and Lasso for Correlated Variables, ISL 6.5.

It is well-known that ridge regression tends to give similar coefficient values to correlated variables, whereas
the lasso may give quite different coefficient values to correlated variables. We will not explore this property
in a very simple setting.

Suppose that n = 2, p = 2, x11 = x12, x21 = x22. Moreover, suppose that y1 + y2 = 0 and x11 + x21 = 0 and
x12 + x22 = 0, so that the estimate for the intercept in a least squares, ridge regression, or lasso model is
zero: β0 = 0.

(1). Ridge regression solves the following optimization:

min
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)
+ λ

p∑
j=1

β2
j

In this case, we have n = 2, p = 2, that is, we have two observations for Y = β0 + β1X1 + β2X2. Thus, the
optimization becomes

min
β

2∑
i=1

(
yi −

2∑
j=1

βjxi,j

)2

︸ ︷︷ ︸
RSS of the model

+ λ

2∑
j=1

β2
j︸ ︷︷ ︸

l2 norm of β, penalty term

(2). For ridge regression, we have the estimator

β̂ridge := (XTX + λI)−1XT y

Plugging in x11, x12, x21, x22, we have

β̂ridge := (
[
x11 x12
x21 x22

]T [
x11 x12
x21 x22

]
+ λI)−1

[
x11 x12
x21 x22

]T [
y1
y2

]
Expanding the above equation, we have

184

Above equation =
[
x11x11 + x21x21 x11x12 + x21x22
x12x11 + x21x21 x12x12 + x22x22

]
+
[
λ 0
0 λ

] [
x11y1 + x21y2
x12y1 + x12y2

]
=

([
x11x11 + x21x21 x11x12 + x21x22
x12x11 + x21x21 x12x12 + x22x22

]
+
[
λ 0
0 λ

])[
0
0

]
=

[
0
0

]
Thus, we achieved β̂1 = β̂2.

(3). For lasso regression, we solve the following optimization

min
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)
+ λ

p∑
j=1
|βj |

(4). Let us plug in x11, x12, x21, x22 to see what will happen to the solution.

βlasso = arg min
β
||y −Xβ||22 + λ||β||1

= sgn(βLS
j)(|βLS

j | − λ)+

Hence, we obtain a family of solution for the coefficient estimator under lasso techinque.

20.2 Problem 2

In this problem, we compare different subset selection methods. We will study the Credit data set, which can
be downloaded from canvas site. The data set records balance (average credit card debt) as well as several
quantitative predictors: age, cards, education, income, limit, and rating. There are also four qualitative
variables: gender, student, status, and ethnicity. We want to fit a regression model of balance on the rest of
the variables.
library(ISLR)
data <- read.csv(

"F://Course/CU Stats/STATS W4241(S) - Statistical Machine Learning/6. Homework/HW3/Credit.csv",
header = T, sep = ",")

head(data) # Quick view

X Income Limit Rating Cards Age Education Gender Student Married
1 1 14.891 3606 283 2 34 11 Male No Yes
2 2 106.025 6645 483 3 82 15 Female Yes Yes
3 3 104.593 7075 514 4 71 11 Male No No
4 4 148.924 9504 681 3 36 11 Female No No
5 5 55.882 4897 357 2 68 16 Male No Yes
6 6 80.180 8047 569 4 77 10 Male No No
Ethnicity Balance
1 Caucasian 333
2 Asian 903
3 Asian 580
4 Asian 964
5 Caucasian 331
6 Caucasian 1151
Check all names and dimensions:
names(data); dim(data)

185

[1] "X" "Income" "Limit" "Rating" "Cards"
[6] "Age" "Education" "Gender" "Student" "Married"
[11] "Ethnicity" "Balance"

[1] 400 12
sum(is.na(data)) # Good! It's a clean data set.

[1] 0
library(leaps)
regfit.full <- regsubsets(Balance ~., data)
summary(regfit.full)

Subset selection object
Call: regsubsets.formula(Balance ~ ., data)
12 Variables (and intercept)
Forced in Forced out
X FALSE FALSE
Income FALSE FALSE
Limit FALSE FALSE
Rating FALSE FALSE
Cards FALSE FALSE
Age FALSE FALSE
Education FALSE FALSE
GenderFemale FALSE FALSE
StudentYes FALSE FALSE
MarriedYes FALSE FALSE
EthnicityAsian FALSE FALSE
EthnicityCaucasian FALSE FALSE
1 subsets of each size up to 8
Selection Algorithm: exhaustive
X Income Limit Rating Cards Age Education GenderFemale
1 (1) " " " " " " "*" " " " " " " " "
2 (1) " " "*" " " "*" " " " " " " " "
3 (1) " " "*" " " "*" " " " " " " " "
4 (1) " " "*" "*" " " "*" " " " " " "
5 (1) " " "*" "*" "*" "*" " " " " " "
6 (1) " " "*" "*" "*" "*" "*" " " " "
7 (1) " " "*" "*" "*" "*" "*" " " "*"
8 (1) "*" "*" "*" "*" "*" "*" " " "*"
StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
1 (1) " " " " " " " "
2 (1) " " " " " " " "
3 (1) "*" " " " " " "
4 (1) "*" " " " " " "
5 (1) "*" " " " " " "
6 (1) "*" " " " " " "
7 (1) "*" " " " " " "
8 (1) "*" " " " " " "
Comment:
An asterisk indicates that a given variable is included in the corresponding model.

Check R-square and RSS:
regfit.full <- regsubsets(Balance ~., data=data, nvmax = 12)

186

reg.summary <- summary(regfit.full)
names(reg.summary)

[1] "which" "rsq" "rss" "adjr2" "cp" "bic" "outmat" "obj"
reg.summary$rsq # R-square

[1] 0.7458484 0.8751179 0.9498788 0.9535800 0.9541606 0.9546879 0.9548167
[8] 0.9549178 0.9549986 0.9550800 0.9551503 0.9552050
reg.summary$rss # Residual Sum of Squares

[1] 21435122 10532541 4227219 3915058 3866091 3821620 3810759
[8] 3802227 3795415 3788550 3782619 3778009
Plot:
par(mfrow=c(2,2))
plot(

reg.summary$rss,
xlab = "Number of Variables",
ylab = "RSS",
type = "l"

)
plot(

reg.summary$adjr2,
xlab = "Number of Variables",
ylab = "Adjusted Rsq",
type = "l"

)
which.max(reg.summary$adjr2)

[1] 7
points(11,reg.summary$adjr2[7],

col = "red", cex = 2, pch = 20)
plot(

reg.summary$cp,
xlab = "Number of Variables",
ylab = "Cp",
type = 'l'

)
which.min(reg.summary$cp)

[1] 6
points(10, reg.summary$cp[6],

col = "red", cex = 2, pch = 20)
which.min(reg.summary$bic)

[1] 4
plot(

reg.summary$bic,
xlab = "Number of Variables",
ylab = "BIC",
type = 'l'

)
points(4, reg.summary$bic[4],

187

col = "red", cex = 2, pch = 20)

2 4 6 8 10 12

5.
0e

+
06

Number of Variables

R
S

S

2 4 6 8 10 12

0.
75

0.
90

Number of Variables

A
dj

us
te

d
R

sq

2 4 6 8 10 12

0
10

00

Number of Variables

C
p

2 4 6 8 10 12

−
12

00
−

70
0

Number of Variables

B
IC

plot(regfit.full, scale = "r2")
plot(regfit.full, scale = "adjr2")
plot(regfit.full, scale = "Cp")
plot(regfit.full, scale = "bic")

188

r2

(I
nt

er
ce

pt
) X

In
co

m
e

Li
m

it
R

at
in

g
C

ar
ds

A
ge

E
du

ca
tio

n
G

en
de

rF
em

al
e

S
tu

de
nt

Ye
s

M
ar

rie
dY

es
E

th
ni

ci
ty

A
si

an
E

th
ni

ci
ty

C
au

ca
si

an

0.750.880.950.950.950.950.950.950.950.960.960.96

ad
jr2

(I
nt

er
ce

pt
) X

In
co

m
e

Li
m

it
R

at
in

g
C

ar
ds

A
ge

E
du

ca
tio

n
G

en
de

rF
em

al
e

S
tu

de
nt

Ye
s

M
ar

rie
dY

es
E

th
ni

ci
ty

A
si

an
E

th
ni

ci
ty

C
au

ca
si

an

0.750.870.950.950.950.950.950.950.950.950.950.95

C
p

(I
nt

er
ce

pt
) X

In
co

m
e

Li
m

it
R

at
in

g
C

ar
ds

A
ge

E
du

ca
tio

n
G

en
de

rF
em

al
e

S
tu

de
nt

Ye
s

M
ar

rie
dY

es
E

th
ni

ci
ty

A
si

an
E

th
ni

ci
ty

C
au

ca
si

an

180068041131111108.887.56.45.5 bi
c

(I
nt

er
ce

pt
) X

In
co

m
e

Li
m

it
R

at
in

g
C

ar
ds

A
ge

E
du

ca
tio

n
G

en
de

rF
em

al
e

S
tu

de
nt

Ye
s

M
ar

rie
dY

es
E

th
ni

ci
ty

A
si

an
E

th
ni

ci
ty

C
au

ca
si

an

−540−810−1200−1200−1200−1200−1200−1200−1200−1200−1200−1200

coef(regfit.full, 4)

(Intercept) Income Limit Cards StudentYes
-499.7272117 -7.8392288 0.2666445 23.1753794 429.6064203
Use regsubsets() function to perform
forward stepwise or backward stepwise selection.
regfit.fwd <- regsubsets(

Balance ~.,
data = data,
nvmax = 12,
method = "forward")

summary(regfit.fwd)

Subset selection object
Call: regsubsets.formula(Balance ~ ., data = data, nvmax = 12, method = "forward")
12 Variables (and intercept)
Forced in Forced out
X FALSE FALSE
Income FALSE FALSE
Limit FALSE FALSE
Rating FALSE FALSE
Cards FALSE FALSE
Age FALSE FALSE
Education FALSE FALSE
GenderFemale FALSE FALSE
StudentYes FALSE FALSE

189

MarriedYes FALSE FALSE
EthnicityAsian FALSE FALSE
EthnicityCaucasian FALSE FALSE
1 subsets of each size up to 12
Selection Algorithm: forward
X Income Limit Rating Cards Age Education GenderFemale
1 (1) " " " " " " "*" " " " " " " " "
2 (1) " " "*" " " "*" " " " " " " " "
3 (1) " " "*" " " "*" " " " " " " " "
4 (1) " " "*" "*" "*" " " " " " " " "
5 (1) " " "*" "*" "*" "*" " " " " " "
6 (1) " " "*" "*" "*" "*" "*" " " " "
7 (1) " " "*" "*" "*" "*" "*" " " "*"
8 (1) "*" "*" "*" "*" "*" "*" " " "*"
9 (1) "*" "*" "*" "*" "*" "*" " " "*"
10 (1) "*" "*" "*" "*" "*" "*" " " "*"
11 (1) "*" "*" "*" "*" "*" "*" " " "*"
12 (1) "*" "*" "*" "*" "*" "*" "*" "*"
StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
1 (1) " " " " " " " "
2 (1) " " " " " " " "
3 (1) "*" " " " " " "
4 (1) "*" " " " " " "
5 (1) "*" " " " " " "
6 (1) "*" " " " " " "
7 (1) "*" " " " " " "
8 (1) "*" " " " " " "
9 (1) "*" " " "*" " "
10 (1) "*" "*" "*" " "
11 (1) "*" "*" "*" "*"
12 (1) "*" "*" "*" "*"
regfit.bwd <- regsubsets(

Balance ~.,
data = data, nvmax = 12,
method = "backward"

)
summary(regfit.bwd)

Subset selection object
Call: regsubsets.formula(Balance ~ ., data = data, nvmax = 12, method = "backward")
12 Variables (and intercept)
Forced in Forced out
X FALSE FALSE
Income FALSE FALSE
Limit FALSE FALSE
Rating FALSE FALSE
Cards FALSE FALSE
Age FALSE FALSE
Education FALSE FALSE
GenderFemale FALSE FALSE
StudentYes FALSE FALSE
MarriedYes FALSE FALSE
EthnicityAsian FALSE FALSE
EthnicityCaucasian FALSE FALSE

190

1 subsets of each size up to 12
Selection Algorithm: backward
X Income Limit Rating Cards Age Education GenderFemale
1 (1) " " " " "*" " " " " " " " " " "
2 (1) " " "*" "*" " " " " " " " " " "
3 (1) " " "*" "*" " " " " " " " " " "
4 (1) " " "*" "*" " " "*" " " " " " "
5 (1) " " "*" "*" "*" "*" " " " " " "
6 (1) " " "*" "*" "*" "*" "*" " " " "
7 (1) " " "*" "*" "*" "*" "*" " " "*"
8 (1) "*" "*" "*" "*" "*" "*" " " "*"
9 (1) "*" "*" "*" "*" "*" "*" " " "*"
10 (1) "*" "*" "*" "*" "*" "*" " " "*"
11 (1) "*" "*" "*" "*" "*" "*" " " "*"
12 (1) "*" "*" "*" "*" "*" "*" "*" "*"
StudentYes MarriedYes EthnicityAsian EthnicityCaucasian
1 (1) " " " " " " " "
2 (1) " " " " " " " "
3 (1) "*" " " " " " "
4 (1) "*" " " " " " "
5 (1) "*" " " " " " "
6 (1) "*" " " " " " "
7 (1) "*" " " " " " "
8 (1) "*" " " " " " "
9 (1) "*" " " "*" " "
10 (1) "*" "*" "*" " "
11 (1) "*" "*" "*" "*"
12 (1) "*" "*" "*" "*"
Check the best nine-variable:
coef(regfit.full, 9)

(Intercept) X Income Limit Rating
-501.11909712 0.04233333 -7.81283276 0.19176507 1.12362322
Cards Age GenderFemale StudentYes EthnicityAsian
18.07910749 -0.62198701 -9.51102994 426.37051557 9.54024975
coef(regfit.fwd, 9)

(Intercept) X Income Limit Rating
-501.11909712 0.04233333 -7.81283276 0.19176507 1.12362322
Cards Age GenderFemale StudentYes EthnicityAsian
18.07910749 -0.62198701 -9.51102994 426.37051557 9.54024975
coef(regfit.bwd, 9)

(Intercept) X Income Limit Rating
-501.11909712 0.04233333 -7.81283276 0.19176507 1.12362322
Cards Age GenderFemale StudentYes EthnicityAsian
18.07910749 -0.62198701 -9.51102994 426.37051557 9.54024975

We saw it is possible to choose among a set of models of different sizes using Cp, BIC, and adjusted R2. We
now consider how to do this using validation set and cross-validation approaches.

In order for these approaches to yield accurate estiamtes of the test error, we must use only the training
observations to perform all aspects of model-fitting — including variable selection. Therefore, the
determination of which model of a given size is best must be made using only the training observation.

191

Split training and testing set:
set.seed(1)
train <- sample(c(TRUE, FALSE),

nrow(data),
rep = TRUE)

test <- (!train)

Training and Errors:
regfit.best <- regsubsets(

Balance ~.,
data = data[train,],
nvmax = 12

)
test.mat <- model.matrix(

Balance ~.,
data = data[test,])

val.errors <- rep(NA, 10)
for (i in 1:12) {

coefi <- coef(regfit.best, id = i)
pred <- test.mat[,names(coefi)] %*% coefi
val.errors[i] <- mean((data$Balance[test] - pred)^2)

}
val.errors

[1] 51754.40 24326.78 12905.05 11616.12 11582.29 12176.73 12041.24
[8] 12024.54 11980.66 11930.86 11943.03 11944.39
which.min(val.errors) # 5

[1] 5
coef(regfit.best, 5)

(Intercept) Income Limit Cards Age
-443.5105267 -7.8334235 0.2659310 22.0262551 -0.8361878
StudentYes
454.7860565
Now we write our own predict function:
predict.regsubsets <- function(object, newdata, id, ...){

form <- as.formula(object$call[[2]])
mat <- model.matrix(form, newdata)
coefi <- coef(object, id = id)
xvars <- names(coefi)
mat[,xvars]%*%coefi

}

Finally, perform best subset selection
regfit.best <- regsubsets(

Balance ~.,
data = data, nvmax = 12

)
coef(regfit.best, 12)

(Intercept) X Income
-487.07423743 0.04104764 -7.80739871

192

Limit Rating Cards
0.19052127 1.14248766 17.83638753
Age Education GenderFemale
-0.62954679 -1.09830902 -9.54615446
StudentYes MarriedYes EthnicityAsian
426.16715394 -8.78055030 16.85751762
EthnicityCaucasian
9.29289272
K-fold CV:
k <- 10
set.seed(1)
folds <- sample(1:k, nrow(data), replace = TRUE)
cv.errors <- matrix(NA, k, 12,

dimnames = list(NULL, paste(1:12)))
for (j in 1:k){

best.fit <- regsubsets(Balance ~.,
data = data[folds!=j,], nvmax = 12)

for (i in 1:12){
pred <- predict(best.fit, data[folds == j,], id = i)
cv.errors[j,i] <- mean(

(data$Balance[folds == j] - pred)^2
)

}
}

Results:
mean.cv.errors <- apply(cv.errors, 2, mean)
mean.cv.errors

1 2 3 4 5 6 7 8
54501.60 27339.31 11389.85 10208.96 10314.11 10077.26 10275.25 10413.53
9 10 11 12
10440.84 10458.38 10379.73 10318.31
Plot:
par(mfrow=c(1,1))
plot(mean.cv.errors, type = 'b')

193

2 4 6 8 10 12

10
00

0
30

00
0

50
00

0

Index

m
ea

n.
cv

.e
rr

or
s

Subset selection on selected variables:
reg.best <- regsubsets(

Balance~.,
data = data,
nvmax = 12

)
coef(reg.best, 12)

(Intercept) X Income
-487.07423743 0.04104764 -7.80739871
Limit Rating Cards
0.19052127 1.14248766 17.83638753
Age Education GenderFemale
-0.62954679 -1.09830902 -9.54615446
StudentYes MarriedYes EthnicityAsian
426.16715394 -8.78055030 16.85751762
EthnicityCaucasian
9.29289272

We will use glmnet package in order to perform ridge regression and lasso.
Set up data:
x <- model.matrix(Balance~., data)[,-1]
y <- data$Balance

Ridge Regression
library(glmnet)

194

grid = 10^seq(10,-2,length=100)
ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)
dim(coef(ridge.mod)) # Check!

[1] 13 100
ridge.mod$lambda[50]

[1] 11497.57
coef(ridge.mod)[,50]

(Intercept) X Income
4.437406e+02 7.098518e-04 2.072944e-01
Limit Rating Cards
6.255481e-03 9.352902e-02 1.094867e+00
Age Education GenderFemale
-7.433736e-03 -3.648999e-02 7.279655e-01
StudentYes MarriedYes EthnicityAsian
1.522470e+01 -2.740740e-01 -3.232180e-01
EthnicityCaucasian
-8.954612e-02
sqrt(sum(coef(ridge.mod)[-1,60]^2))

[1] 157.2132
ridge.mod$lambda[60]

[1] 705.4802
coef(ridge.mod)[,60]

(Intercept) X Income
10.95570094 0.00132288 0.47042764
Limit Rating Cards
0.04709662 0.70327881 10.00914897
Age Education GenderFemale
-0.54080663 0.01398148 4.63069943
StudentYes MarriedYes EthnicityAsian
156.69520888 -6.12532307 0.62575951
EthnicityCaucasian
1.42887731
sqrt(sum(coef(ridge.mod)[-1,60]^2))

[1] 157.2132
Comment:
Notice that much larger l2 norm of the coefficients associated
with this smaller value of lambda.

Predict
predict(ridge.mod,

s=50,
type = "coefficients")[1:10,]

(Intercept) X Income Limit Rating
-387.01506763 0.02788993 -4.71033241 0.11026631 1.60846689

195

Cards Age Education GenderFemale StudentYes
16.10495492 -1.00880354 -0.40547730 -3.16706653 372.95067139
Now we want to estimate the test error
Split training and testing
set.seed(1)
train <- sample(1:nrow(x), nrow(x)/2)
test <- (-train)
y.test = y[test]

Fit ridge:
ridge.mod <- glmnet(x[train,],

y[train],
alpha=0,
lambda=grid,
thresh = 1e-12)

ridge.pred <- predict(ridge.mod,s=4,newx = x[test,])
mean((ridge.pred - y.test)^2)

[1] 10629.73
Comment:
This gives us the MSE for test set.

We could predict each test observation
using mean of the training observations.
mean((mean(y[test]) - y.test)^2)

[1] 192298.3
We could also get the same result by
fitting a ridge regression model with
a large lambda
ridge.pred <- predict(ridge.mod,

s = 1e10,
newx = x[test,])

mean((ridge.pred - y.test)^2)

[1] 194734.7
Check least squaers
which is ridge with lambda = 0
ridge.pred <- predict(ridge.mod,

s = 0,
newx = x[test,],
exact = T)

mean((ridge.pred - y.test)^2)

[1] 10743.51
lm(y ~ x, subset = train)

##
Call:
lm(formula = y ~ x, subset = train)
##
Coefficients:
(Intercept) xX xIncome

196

-514.25138 0.05894 -7.89399
xLimit xRating xCards
0.20960 0.93521 21.77308
xAge xEducation xGenderFemale
-0.62060 -1.73676 -18.42083
xStudentYes xMarriedYes xEthnicityAsian
438.05260 -11.30673 30.59576
xEthnicityCaucasian
21.48476
predict(ridge.mod, s = 0,

exact = T, type = "coefficients")[1:12,]

(Intercept) X Income Limit Rating
-514.26738239 0.05893909 -7.89395739 0.20954177 0.93601568
Cards Age Education GenderFemale StudentYes
21.76904813 -0.62062602 -1.73681038 -18.42100572 438.04771338
MarriedYes EthnicityAsian
-11.30935593 30.59747319
In general:
set.seed(1)
cv.out <- cv.glmnet(x[train,],y[train],alpha=0)
plot(cv.out)

4 6 8 10 12

50
00

0
15

00
00

25
00

00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

bestlam <- cv.out$lambda.min
bestlam

197

[1] 45.57503
How about test MSE?
ridge.pred <- predict(ridge.mod,

s = bestlam, newx = x[test,])
mean((ridge.pred - y.test)^2)

[1] 14972.84
out <- glmnet(x, y, alpha = 0)
predict(out,

type = "coefficients",
s = bestlam)[1:12,]

(Intercept) X Income Limit Rating
-394.95250417 0.02879516 -4.89652995 0.11194699 1.62982781
Cards Age Education GenderFemale StudentYes
16.03371853 -0.99357568 -0.43248752 -3.53888279 376.69203127
MarriedYes EthnicityAsian
-12.36118029 12.64500063
Lasso
lasso.mod <- glmnet(x[train,],

y[train], alpha = 1,
lambda = grid)

plot(lasso.mod)

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0

L1 Norm

C
oe

ffi
ci

en
ts

0 2 2 4 6 12

Comment:
We see the coefficient plot that depending

198

on the choise of tuning parameter.

CV and Test error:
set.seed(1)
cv.out <- cv.glmnet(x[train,],

y[train], alpha = 1)
plot(cv.out)

0 1 2 3 4 5 6

0
50

00
0

15
00

00
25

00
00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

12 12 12 12 11 9 6 6 5 4 4 2 2 2 1 1 1

bestlam <- cv.out$lambda.min
lasso.pred <- predict(lasso.mod, s = bestlam,

newx = x[test,])
mean((lasso.pred - y.test)^2)

[1] 10600.11
Comment:
This is substantially lower than the test
set MSE of the null model and of
least squares.

Lasso model with lambda chosen
out <- glmnet(x, y, alpha = 1, lambda = grid)
lasso.coef <- predict(

out, type = "coefficients",
s = bestlam)[1:12,]

lasso.coef

199

(Intercept) X Income Limit Rating
-490.84088807 0.03534749 -7.71554696 0.17366046 1.37247069
Cards Age Education GenderFemale StudentYes
16.29162828 -0.60623545 -0.82574926 -8.12111664 422.74904847
MarriedYes EthnicityAsian
-7.72139308 13.29553015
lasso.coef[lasso.coef!=0]

(Intercept) X Income Limit Rating
-490.84088807 0.03534749 -7.71554696 0.17366046 1.37247069
Cards Age Education GenderFemale StudentYes
16.29162828 -0.60623545 -0.82574926 -8.12111664 422.74904847
MarriedYes EthnicityAsian
-7.72139308 13.29553015

The following is optional for this homework:

Now we attempt Principal Components Regression.
library(pls)
set.seed(2)
pcr.fit <- pcr(

Balance ~.,
data = data, scale = TRUE,TRUEvalidation = "CV"

)
summary(pcr.fit)

Data: X dimension: 400 12
Y dimension: 400 1
Fit method: svdpc
Number of components considered: 12
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
X 22.98 36.54 46.05 55.25 64.23 72.34 80.36
Balance 57.93 58.37 61.06 61.34 61.39 62.34 67.36
8 comps 9 comps 10 comps 11 comps 12 comps
X 87.75 94.43 97.80 99.98 100.00
Balance 68.62 68.70 68.71 95.49 95.52
validationplot(pcr.fit, val.type = "MSEP")

200

0 2 4 6 8 10 12

50
00

0
15

00
00

Balance

number of components

M
S

E
P

Comment:
We see that the smallest CV error occurs
when M = 11 components are used. This is
barely fewer than M = 12, which amounts
to simply performing least squares, because
when all of the components are used in PCR
no dimension reduction occurs. However,
from the plot we also see that the CV error
is roughly the same when only one component
is included in the model. This suggests
that a model that uses just a small
number of components might suffice.

Perform PCR on training data:
set.seed(1)
pcr.fit <- pcr(

Balance ~.,
data = data, subset = train,
scale = TRUE,
validation = "CV"

)
validationplot(pcr.fit, val.type = "MSEP")

201

0 2 4 6 8 10 12

50
00

0
15

00
00

Balance

number of components

M
S

E
P

pcr.pred <- predict(pcr.fit,x[test,],ncomp = 10)
mean((pcr.pred - y.test)^2)

[1] 67014.07
Fit PCR on full data set:
pcr.fit <- pcr(y ~ x,

scale = TRUE, ncomp = 7)
summary(pcr.fit)

Data: X dimension: 400 12
Y dimension: 400 1
Fit method: svdpc
Number of components considered: 7
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
X 22.98 36.54 46.05 55.25 64.23 72.34 80.36
y 57.93 58.37 61.06 61.34 61.39 62.34 67.36
Partial Least Squares:
set.seed(1)
pls.fit = plsr(

Balance ~., data = data,
subset = train, scale = TRUE,TRUEvalidation = "CV"

)
summary(pls.fit)

Data: X dimension: 200 12

202

Y dimension: 200 1
Fit method: kernelpls
Number of components considered: 12
TRAINING: % variance explained
1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
X 23.41 31.68 35.93 46.64 55.75 61.85 68.53
Balance 70.92 84.90 95.30 96.13 96.20 96.21 96.21
8 comps 9 comps 10 comps 11 comps 12 comps
X 77.28 80.13 85.75 93.52 100.00
Balance 96.21 96.25 96.26 96.26 96.26
validationplot(pls.fit, val.type = "MSEP")

0 2 4 6 8 10 12

0
50

00
0

15
00

00

Balance

number of components

M
S

E
P

Test set MSE:
pls.pred <- predict(pls.fit, x[test,],ncomp = 2)
mean((pls.pred - y.test)^2)

[1] 34724.48
Perform PLS using full data set:
pls.fit <- plsr(

Balance ~., data = data, scale = TRUE, ncomp = 2
)
summary(pls.fit)

Data: X dimension: 400 12
Y dimension: 400 1
Fit method: kernelpls

203

Number of components considered: 2
TRAINING: % variance explained
1 comps 2 comps
X 22.54 29.96
Balance 69.67 86.42

204

	STATISTICAL LEARNING
	Unsupervised and Supervised Learning
	Parametric and Non-parametric
	Loss Function
	Bias Variance Decomposition

	CLASSIFICATION PROBLEM
	Bayesian Model
	Maximum Likelihood Estimation
	Bayes' Theorem
	MAP Estimation
	Symmetric and Orthogonal Matrices

	EM Algorithm
	Jensen's Inequality
	Will it Converge?

	Logistic
	Linear Discriminant Analysis (LDA)

	UNSUPERVISED LEARNING
	Principal Component Analysis (PCA)
	Mathematis of Principal Components
	Minimizing Projection Residuals
	Maximizing Variance

	Clustering Methods
	K-Means Clustering
	Hierarchical Clustering

	GENERALIZED LINEAR MODEL
	Exponential Family
	Constructing GLMs
	Ordinary Least Squarers
	Logistic Regression
	Softmax Regression

	RESAMPLING AND MODEL SELECTION
	Cross Validation
	K-Fold Cross Validation

	NON-LINEAR REGRESSION
	Polynomial
	Step Function
	Basis Functions
	Regression Splines
	Piecewise Polynomials
	Constraints and Splines

	TREE CLASSIFIERS
	Regression Tree
	Pruning
	Classification Trees
	Advantages and Disadvantages of Trees

	Bagging
	Out-of-bag (OOB)

	Random Forests
	Boosting

	SUPPORT VECTOR MACHINE
	Hyperplanes
	Linear Classifier
	Maximum Margin
	Kernels
	RBF
	Definition: Kernel Function
	Mercer's Theorem

	Support Vectors
	Optimization
	Optimization Problems
	Gradient Descent
	Newton's Method
	Karush-Kuhn-Tucker

	NEURO-NETWORK
	A Neuron
	Neuron as Linear Classifier
	Activation Functions
	Sigmoid
	Tanh
	ReLU
	Leaky ReLU
	Maxout

	NN Architecture: a Layer-wise Organization
	Naming Conventions
	Output Layer
	Sizing NN

	CONVOLUTIONAL NEURAL NETWORKS (CNN)
	Architecture Overview
	Layers Used to Build CNN
	Input
	Conv
	Relu
	Pool
	FC

	Convolutional Layer
	Overview and intuition without brain stuff
	The brain view
	Local Connectivity
	Spatial arrangement
	Constraints on strides
	Parameter Sharing

	Implementation as Matrix Multiplication

	DIMENSION REDUCTION
	Bias-Variance Trade-off
	PCR
	The Principal Components Regression Approach

	Step Variable Selection
	James-Stein
	Ridge
	Motivation
	Ridge Approach
	Proofs
	Bayesian Framework

	Lasso
	A Leading Example
	Lasso Estimator
	Compute Lasso Solution

	Influence Measure: I Score
	Background and Motivation
	Theoretical Framework

	Exercise 1
	K-Means
	Linear Regression
	Logistic Regression
	LDA
	PCA
	Application: Stock Data; Logistic, LDA, QDA, and KNN
	Application: Insurance Data

	Exercise 2
	Boosting
	Intuition
	Model

	Dimension Reduction Techniques
	PCR
	Step-wise Regression
	Ridge vs. Lasso

	Exercise 3
	Support Vector Classifier
	Support Vector Machine
	ROC Curve
	SVM with Multiple Classes
	Application to Gene Expression Data

	Exercise 4
	Cubic Spline
	Sampling for Monte Carlo

	Exercise 5
	Fitting Classification Trees
	Fitting Regression Trees
	Bagging and Random Forests
	Boosting

	Exercise 6
	Neural Network
	Convolutional Neural Network

	Homework 1
	Problem 1
	Problem 2
	1. Download Data
	2. PCA on Prices (cor =)
	3. PCA on Prices (cor = TRUE)
	4. Return Analysis

	Homework 2
	Problem 1
	Problem 2
	(a) Cross-Validation (Linear)
	(b) Cross-Validation (Non-Linear)

	Homework 3
	Problem 1
	Problem 2

