
Chapter 8

Decision trees

“Decision tree learning is a method for approximating discrete valued target functions, in which the
learned function is represented by a decision tree. Decision tree learning is one of the most widely
used and practical methods for inductive inference.” ([4] p.52)

8.1 Decision tree: Example
Consider the following situation. Somebody is hunting for a job. At the very beginning, he decides
that he will consider only those jobs for which the monthly salary is at least Rs.50,000. Our job
hunter does not like spending much time traveling to place of work. He is comfortable only if the
commuting time is less than one hour. Also, he expects the company to arrange for a free coffee
every morning! The decisions to be made before deciding to accept or reject a job offer can be
schematically represented as in Figure 8.6. This figure represents a decision tree1.

Root node
Salary ≥ Rs.50000?

Commute one hour?

Decline offer

Yes

Offers free coffee?

Accept offer

Yes

Decline offer

No

No

Yes

Decline offer

No

Figure 8.1: Example for a decision tree

Here, the term “tree” refers to the concept of a tree in graph theory in mathematics2. In graph
theory, a tree is defined as an undirected graph in which any two vertices are connected by exactly
one path. Using the conventions of graph theory, the decision tree shown in Figure 8.6 can be
represented as a graph-theoretical tree as in Figure 8.2. Since a decision tree is a graph-theoretical
tree, all terminology related to graph-theoretical trees can be applied to describe decision trees also.
For example, in Figure 8.6, the nodes or vertices shown as ellipses are called the leaf nodes. All
other nodes, except the root node, are called the internal nodes.

1In such diagrams, the “tree” is shown upside down with the root node at the top and all the leaves at the bottom.
2The term “tree” was coined in 1857 by the British mathematician Arthur Cayley (see Wikipedia).

83



CHAPTER 8. DECISION TREES 84

Root node

Yes

Yes No

No

Yes No

Figure 8.2: The graph-theoretical representation of the decision tree in Figure 8.6

8.2 Two types of decision trees
There are two types of decision trees.

1. Classification trees
Tree models where the target variable can take a discrete set of values are called classification
trees. In these tree structures, leaves represent class labels and branches represent conjunc-
tions of features that lead to those class labels.

2. Regression trees
Decision trees where the target variable can take continuous values (real numbers) like the
price of a house, or a patient’s length of stay in a hospital, are called regression trees.

8.3 Classification trees
We illustrate the concept with an example.

8.3.1 Example
Data

Nam Features Class label
gives birth aquatic

animal
aerial
animal has legs

human yes no no yes mammal
python no no no no reptile
salmon no yes no no fish
frog no semi no yes amphibian
bat yes no yes yes bird
pigeon no no yes yes bird
cat yes no no yes mammal
shark yes yes no no fish
turtle no semi no yes amphibian
salamander no semi no yes amphibian

Table 8.1: The vertebrate data set



CHAPTER 8. DECISION TREES 85

Consider the data given in Table 8.1 which specify the features of certain vertebrates and the class
to which they belong. For each species, four features have been identified: “gives birth”, ”aquatic
animal”, “aerial animal” and “has legs”. There are five class labels, namely, “amphibian”, “bird”,
“fish”, “mammal” and “reptile”. The problem is how to use this data to identify the class of a newly
discovered vertebrate.

Construction of the tree

Step 1

We split the set of examples given in Table 8.1 into disjoint subsets according to the values of the
feature “gives birth”. Since there are only two possible values for this feature, we have only two
subsets: One subset consisting of those examples for which the value of “gives birth” is “yes” and
one subset for which the value is “no”. The former is given in Table 8.2 and the latter in Table 8.3.
This stage of the classification can be represented as in Figure 8.3.

Name Gives
birth

Aquatic
animal

Aerial
animal

Has legs Class la-
bel

human yes no no yes mammal
bat yes no yes yes bird
cat yes no no yes mammal
shark yes yes no no fish

Table 8.2: The subset of Table 8.1 with “gives birth” = ”yes"

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

python no no no no reptile
salmon no yes no no fish
frog no semi no yes amphibian
pigeon no no yes yes bird
turtle no semi no yes amphibian
salamander no semi no yes amphibian

Table 8.3: The subset of Table 8.1 with “gives birth” = ”no"

Root node
Table 8.1:

gives birth?

Table 8.2:
aquatic?

Yes

Table 8.3:
aquatic?

No

Figure 8.3: Classification tree

Step 2

We now consider the examples in Table 8.2. We split these examples based on the values of the
feature “aquatic animal”. There are three possible values for this feature. However, only two of



CHAPTER 8. DECISION TREES 86

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

human yes no no yes mammal
bat yes no yes yes bird
cat yes no no yes mammal

Table 8.5: The vertebrate data set

Root node
Table 8.1:

gives birth?

Table 8.2:
aquatic?

Table 8.4

fish

yes

Table 8.5:
aerial?

Part of
Table 8.5

bird

yes

Part of
Table 8.5

mammal

no

no

Yes

Table 8.3:
aquatic?

no

Figure 8.4: Classification tree

these appear in Table 8.2. Accordingly, we need consider only two subsets. These are shown in
Tables 8.4 and 8.5.

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

shark yes yes no no fish

Table 8.4: The vertebrate data set

• Table 8.4 contains only one example and hence no further splitting is required. It leads to the
assignment of the class label “fish”.

• The examples in Table 8.5 need to be split into subsets based on the values of “aerial animal”.
It can be seen that these subsets immediately lead to unambiguous assignment of class labels:
The value of “no” leads to “mammal” and the value “yes” leads to ”bird”.

At this stage, the classification tree is as shown in Figure 8.4



CHAPTER 8. DECISION TREES 87

Step 3

Next we consider the examples in Table 8.3 and split them into disjoint subsets based on the values
of “aquatic animal”. We get the examples in Table 8.6 for “yes”, the examples in Table ?? for “no”
and the examples in Table ?? for “semi”. We now split the resulting subsets based on the values of

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

salmon no yes no no fish

Table 8.6: The vertebrate data set

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

frog no semi no yes amphibian
turtle no semi no yes amphibian
salamander no semi no yes amphibian

Table 8.7: The vertebrate data set

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

python no no no no reptile
pigeon no no yes yes bird

Table 8.8: The vertebrate data set

“has legs”, etc. Putting all these together, we get the the diagram in Figure 8.5 as the classification
tree for the data in Table 8.1.

8.3.2 Classification tree in rule format
The classification tree shown in Figure 8.5 can be presented as a set of rules in the form of an
algorithm.

Algorithm for classification of vertebrates

1. if give birth = ”yes” then
2. if aquatic = “yes” then
3. return class = “fish”
4. else
5. if aerial = “yes” then
6. return class = “bird”
7. else
8. return class = “mammal”
9. end if

10. end if
11. else
12. if aquatic = “yes” then
13. return class = “fish”



CHAPTER 8. DECISION TREES 88

Root node
Table 8.1:

gives birth?

Table 8.2:
aquatic?

Table 8.4

fish

yes

Table 8.5:
aerial?

Part of
Table 8.5

bird

yes

Part of
Table 8.5

mammal

no

no

yes

Table 8.3:
aquatic?

Table 8.6

fish

yes

Table 8.7

amph

semi

Table 8.8
aerial?

Part of
Table 8.8

bird

yes

Part of
Table 8.8

reptile

no

no

no

Figure 8.5: Classification tree

14. end if
15. if aquatic = “semi” then
16. return class = “amphibian”
17. else
18. if aerial = “yes” then
19. return class = “amphibian”
20. else
21. return class = “reptile”
22. end if
23. end if
24. end if

8.3.3 Some remarks
1. On the elements of a classification tree

The various elements in a classification tree are identified as follows.

• Nodes in the classification tree are identified by the feature names of the given data.

• Branches in the tree are identified by the values of features.

• The leaf nodes identified by are the class labels.



CHAPTER 8. DECISION TREES 89

2. On the order in which the features are selected

In the example discussed above, initially we chose the feature “gives birth” to split the data set
into disjoint subsets and then the feature “aquatic animal”, and so on. There was no theoretical
justification for this choice. We could as well have chosen the feature “aquatic animal”, or any other
feature, as the initial feature for splitting the data. The classification tree depends on the order in
which the features are selected for partitioning the data.

3. Stopping criteria

A real-world data will contain much more example record than the example we considered earlier.
In general, there will be a large number of features each feature having several possible values. Thus,
the corresponding classification trees will naturally be more complex. In such cases, it may not be
advisable to construct all branches and leaf nodes of the tree. The following are some of commonly
used criteria for stopping the construction of further nodes and branches.

• All (or nearly all) of the examples at the node have the same class.

• There are no remaining features to distinguish among the examples.

• The tree has grown to a predefined size limit.

8.4 Feature selection measures
If a dataset consists of n attributes then deciding which attribute is to be to placed at the root or at
different levels of the tree as internal nodes is a complicated problem. It is not enough that we just
randomly select any node to be the root. If we do this, it may give us bad results with low accuracy.

The most important problem in implementing the decision tree algorithm is deciding which
features are to be considered as the root node and at each level. Several methods have been developed
to assign numerical values to the various features such that the values reflect the relative importance
of the various features. These are called the feature selection measures. Two of the popular feature
selection measures are information gain and Gini index. These are explained in the next section.

8.5 Entropy
The degree to which a subset of examples contains only a single class is known as purity, and any
subset composed of only a single class is called a pure class. Informally, entropy3 is a measure of
“impurity” in a dataset. Sets with high entropy are very diverse and provide little information about
other items that may also belong in the set, as there is no apparent commonality.

Entropy is measured in bits. If there are only two possible classes, entropy values can range from
0 to 1. For n classes, entropy ranges from 0 to log2(n). In each case, the minimum value indicates
that the sample is completely homogeneous, while the maximum value indicates that the data are as
diverse as possible, and no group has even a small plurality.

8.5.1 Definition
Consider a segment S of a dataset having c number of class labels. Let pi be the proportion of
examples in S having the i th class label. The entropy of S is defined as

Entropy (S) =
c

∑
i=1

−pi log2(pi).

3From German Entropie “measure of the disorder of a system,” coined in 1865 (on analogy of Energie) by German
physicist Rudolph Clausius (1822-1888), in his work on the laws of thermodynamics, from Greek entropia “a turning toward,”
from en “in” + trope “a turning, a transformation,”



CHAPTER 8. DECISION TREES 90

Figure 8.6: Plot of p vs. Entropy

Remark

In the expression for entropy, the value of 0 × log2(0) is taken as zero.

Special case

Let the data segment S has only two class labels, say, “yes” and “no”. If p is the proportion of
examples having the label “yes” then the proportion of examples having label “no” will be 1 − p. In
this case, the entropy of S is given by

Entropy (S) = −p log2(p) − (1 − p) log2(1 − p).

If we plot the values of graph of Entropy (S) for all possible values of p, we get the diagram shown
in Figure 8.64.

8.5.2 Examples
Let “xxx” be some class label. We denote by pxxx the proportion of examples with class label “xxx”.

1. Entropy of data in Table 8.1
Let S be the data in Table 8.1. The class labels are ”amphi”, “bird”, ”fish”, ”mammal” and
”reptile”. In S we have the following numbers.

Number of examples with class label “amphi” = 3
Number of examples with class label “bird” = 2
Number of examples with class label “fish” = 2
Number of examples with class label “mammal” = 2
Number of examples with class label “reptile” = 1
Total number of examples = 10

Therefore, we have:

Entropy (S) = ∑
for all classes “xxx”

−pxxx log2(pxxx)

4Plot created using R language.



CHAPTER 8. DECISION TREES 91

= − pamphi log2(pamphi) − pbird log2(pbird)
− pfish log2(pfish) − pmammal log2(pmammal)
− preptile log2(preptile)

= − (3/10) log2(3/10) − (2/10) log2(2/10)
− (2/10) log2(2/10) − (2/10) log2(2/10)
− (1/10) log2(1/10)

= 2.2464

2. Entropy of data in Table 8.2
Consider the segment S of the data in Table 8.1 given in Table 8.2. For quick reference, the
table has been reproduced below:

Name Gives
birth

Aquatic
animal

Aerial
animal

Has legs Class la-
bel

human yes no no yes mammal
bat yes no yes yes bird
cat yes no no yes mammal
shark yes yes no no fish

Three class labels appear in this segment, namely, “bird”, “fish” and “mammal”. We have:

Number of examples with class label “bird” 1
Number of examples with class label “fish” 1
Number of examples with class label “mammal” 2
Total number of examples 4

Therefore we have

Entropy (S) = ∑
for all classes “xxx”

−pxxx log2(pxxx)

= − pbird log2(pbird) − pfish log2(pfish)
− pmammal log2(pmammal)

= − (1/4) log2(1/4) − (1/4) log2(1/4) − (2/4) log2(2/4)
= − (1/4) × (−2) − (1/4) × (−2) − (2/4) × (−1)
= 1.5 (8.1)

3. Entropy of data in Table 8.3
Consider the segment S of the data in Table 8.1 given in Table 8.3. For quick reference, the
table has been reproduced below:

Name gives birth aquatic
animal

aerial
animal

has legs Class la-
bel

python no no no no reptile
salmon no yes no no fish
frog no semi no yes amphibian
pigeon no no yes yes bird
turtle no semi no yes amphibian
salamander no semi no yes amphibian

Four class labels appear in this segment, namely, “amphi”, “bird”, “fish” and “reptile”. We
have:



CHAPTER 8. DECISION TREES 92

Number of examples with class label “amphi” 3
Number of examples with class label “bird” 1
Number of examples with class label “fish” 1
Number of examples with class label “reptile” 1
Total number of examples 6

Therefore, we have:

Entropy (S) = ∑
for all classes “xxx”

−pxxx log2(pxxx)

= − pamphi log2(pamphi) − pbird log2(pbird) − pfish log2(pfish)
− preptile log2(preptile)

= − (3/6) log2(3/6) − (1/6) log2(1/6) − (1/6) log2(1/6)
− (1/6) log2(1/6)

= 1.7925 (8.2)

8.6 Information gain

8.6.1 Definition
Let S be a set of examples, A be a feature (or, an attribute), Sv be the subset of S with A = v,
and Values (A) be the set of all possible values of A. Then the information gain of an attribute A
relative to the set S, denoted by Gain (S,A), is defined as

Gain(S,A) = Entropy(S) − ∑
v∈Values (A)

∣Sv ∣
∣S∣ × Entropy(Sv).

where ∣S∣ denotes the number of elements in S.

8.6.2 Example 1
Consider the data S given in Table 8.1. We have have already seen that

∣S∣ = 10

Entropy (S) = 2.2464.

We denote the information gain corresponding to the feature “xxx” by Gain (S,xxx).

1. Computation of Gain (S,gives birth)

A1 = gives birth
Values of A1 = {“yes”, “no”}

SA1=yes = Data in Table 8.2
∣SA1=yes∣ = 4

Entropy (SA1=yes) = 1.5 (See Eq.(8.1))
SA1=no = Data in Table 8.3

∣SA1=no∣ = 6

Entropy (SA1=no) = 1.7925 (See Eq.(8.2))

Now we have

Gain(S,A1) = Entropy(S) − ∑
v∈Values(A1)

∣Sv ∣
∣S∣ × Entropy(Sv)



CHAPTER 8. DECISION TREES 93

= Entropy(S) − ∣SA1=yes∣
∣S∣ × Entropy(SA1=yes)

− ∣SA1=no∣
∣S∣ × Entropy(SA1=no)

= 2.2464 − (4/10) × 1.5 − (6/10) × 1.7925

= 0.5709

2. Computation of Gain (S,aquatic)

A2 = aquatic
Values of A2 = {“yes”, “no”, “semi”}

SA2=yes = See Table 8.1
∣SA2=yes∣ = 2

Entropy (SA2=yes) = −pfish log2(pfish)
= −(2/2) log2(2/2)
= 0

SA2=no = See Table 8.1
∣SA2=no∣ = 5

Entropy (SA2=no) = −pmammal log2(pmammal) − preptile log2(preptile)
− pbird log2(pbird)

= −(2/5) × log2(2/5) − (1/5) × log2(1/5)
− (2/5) × log2(2/5)

= 1.5219

SA2=semi = See Table 8.1
∣SA2=semi∣ = 3

Entropy (SA2=semi) = −pamphi log2(pamphi)
= −(3/3) × log2(3/3)
= 0

Gain(S,A2) = Entropy(S) − ∑
v∈Values(A2)

∣Sv ∣
∣S∣ × Entropy(Sv)

= Entropy(S) − ∣SA1=yes∣
∣S∣ × Entropy(SA1=yes)

− ∣SA1=no∣
∣S∣ × Entropy(SA1=no)

− ∣SA1=semi∣
∣S∣ × Entropy(SA1=semi)

= 2.2464 − (2/10) × 0 − (5/10) × 1.5219 − (3/3) × 0

= 1.48545

3. Computations of Gain (S,aerial animal) and Gain (S,has legs)
These are left as exercises.

8.7 Gini indices
The Gini split index of a data set is another feature selection measure in the construction of classifi-
cation trees. This measure is used in the CART algorithm.



CHAPTER 8. DECISION TREES 94

8.7.1 Gini index
Consider a data set S having r class labels c1, . . . , cr. Let pi be the proportion of examples having
the class label ci. The Gini index of the data set S, denoted by Gini(S), is defined by

Gini(S) = 1 −
r

∑
i=1

p2i .

Example

Let S be the data in Table 8.1. There are four class labels ”amphi”, “bird”, ”fish”, ”mammal” and
”reptile”. The numbers of examples having these class labels are as follows:

Number of examples with class label “amphi” = 3
Number of examples with class label “bird” = 2
Number of examples with class label “fish” = 2
Number of examples with class label “mammal” = 2
Number of examples with class label “reptile” = 1
Total number of examples = 10

The Gini index of S is given by

Gini(S) = 1 −
r

∑
i=1

p2i

= 1 − (3/10)2 − (2/10)2 − (2/10)2 − (2/10)2 − (1/10)2

= 0.78

8.7.2 Gini split index
Let S be a set of examples, A be a feature (or, an attribute), Sv be the subset of S with A = v,
and Values (A) be the set of all possible values of A. Then the Gini split index of A relative to S,
denoted by Ginisplit(S,A), is defined as

Ginisplit(S,A) = ∑
v∈Values (A)

∣Sv ∣
∣S∣ ×Gini(Sv).

where ∣S∣ denotes the number of elements in S.

8.8 Gain ratio
The gain ratio is a third feature selection measure in the construction of classification trees.

Let S be a set of examples, A a feature having c different values and let the set of values of A be
denoted by Values(A). We defined the information gain of A relative to S, denoted by Gain(S,A),
by

Gain(S,A) = Entropy(S) − ∑
v∈Values(A)

∣Sv ∣
∣S∣ × Entropy(Sv).

We now define thesplit information of A relative to S, dented by SplitInformation(S,A), by

SplitInformation(S,A) = −
c

∑
i=1

∣Si∣
∣S∣ log2

∣Si∣
∣S∣

where S1, . . . Sc are the c subsets of examples resulting from partitioning S into the c values of the
attribute A. The gain ratio of A relative to S, denoted by GainRatio(S,A), by

GainRatio(S,A) = Gain(S,A)
SplitInformation(S,A) .



CHAPTER 8. DECISION TREES 95

8.8.1 Example
Consider the data S given in Table 8.1. LetA denote the attribute “gives birth”.We have have already
seen that

∣S∣ = 10

Entropy (S) = 2.2464

Gain(S,A) = 0.5709

Now we have

SplitInformation(S,A) = − ∣Syes∣
∣S∣ log2

∣Syes∣
∣S∣ − ∣Sno∣

∣S∣ log2

∣Sno∣
∣S∣

= − 4

10
× log2

4

10
− 6

10
× log2

6

10
= 0.9710

GainRatio = 0.5709

0.9710
= 0.5880

In a similar way we can compute the gain ratios Gain(S, “aquatic”), Gain(S, “aerial”) and Gain(S, “has legs”).

8.9 Decision tree algorithms

8.9.1 Outline

Decision tree algorithm: Outline

1. Place the “best” feature (or, attribute) of the dataset at the root of the tree.

2. Split the training set into subsets. Subsets should be made in such a way that each subset
contains data with the same value for a feature.

3. Repeat Step 1 and Step 2 on each subset until we find leaf nodes in all the branches of the tree.

8.9.2 Some well-known decision tree algorithms
1. ID3 (Iterative Dichotomiser 3) developed by Ross Quinlan

2. C4.5 developed by Ross Quinlan

3. C5.0 developed by Ross Quinlan

4. CART (Classification And Regression Trees)

5. 1R (One Rule) developed by Robert Holte in 1993.

6. RIPPER (Repeated Incremental Pruning to Produce Error Reduction) Introduced in 1995 by
William W. Cohen.

As an example of decision tree algorithms, we discuss the details of the ID3 algorithm and illustrate
it with an example.



CHAPTER 8. DECISION TREES 96

8.10 The ID3 algorithm
Ross Quinlan, while working at University of Sydney, developed the ID3 (Iterative Dichotomiser
3)5 algorithm and published it in 1975.

Assumptions

• The algorithm uses information gain to select the most useful attribute for classification.

• We assume that there are only two class labels, namely, “+” and “−”. The examples with class
labels “+” are called positive examples and others negative examples.

8.10.1 The algorithm
Notations

The following notations are used in the algorithm:

S The set of examples
C The set of class labels
F The set of features
A An arbitrary feature (attribute)
Values(A) The set of values of the feature A
v An arbitrary value of A
Sv The set of examples with A = v
Root The root node of a tree

Algorithm ID3(S, F , C)

1. Create a root node for the tree.
2. if (all examples in S are positive) then
3. return single node tree Root with label “+”
4. end if
5. if (all examples are negative) then
6. return single node tree Root with label “–”
7. end if
8. if (number of features is 0) then
9. return single node tree Root with label equal to the most common class label.

10. else
11. Let A be the feature in F with the highest information gain.
12. Assign A to the Root node in decision tree.
13. for all (values v of A) do
14. Add a new tree branch below Root corresponding to v.
15. if (Sv is empty) then
16. Below this branch add a leaf node with label equal to the most common class

label in the set S.
17. else
18. Below this branch add the subtree formed by applying the same algorithm ID3

with the values ID3(Sv,C,F − {A}).
19. end if
20. end for
21. end if

5dichotomy: A division into two parts or classifications especially when they are sharply distinguished or opposed



CHAPTER 8. DECISION TREES 97

8.10.2 Example
Problem

Use ID3 algorithm to construct a decision tree for the data in Table 8.9.

Day outlook temperature humidity wind playtennis
D1 sunny hot high weak no
D2 sunny hot high strong no
D3 overcast hot high weak yes
D4 rain mild high weak yes
D5 rain cool normal weak yes
D6 rain cool normal strong no
D7 overcast cool normal strong yes
D8 sunny mild high weak no
D9 sunny cool normal weak yes
D10 rain mild normal weak yes
D11 sunny mild normal strong yes
D12 overcast mild high strong yes
D13 overcast hot normal weak yes
D14 rain mild high strong no

Table 8.9: Training examples for the target concept “PlayTennis”

Solution

Note that, in the given data, there are four features but only two class labels (or, target variables),
namely, “yes” and “no”.

Step 1

We first create a root node for the tree (see Figure 8.7).

Root node
Table 8.9

Figure 8.7: Root node of the decision tree for data in Table 8.9

Step 2

Note that not all examples are positive (class label “yes”) and not all examples are negative (class
label “no”). Also the number of features is not zero.

Step 3

We have to decide which feature is to be placed at the root node. For this, we have to calculate the
information gains corresponding to each of the four features. The computations are shown below.

(i) Calculation of Entropy (S)

Entropy (S) = −pyes log2(pyes) − pno log2(pno)
= −(9/14) × log2 (9/14) − (5/14) × log2 (5/14)
= 0.9405



CHAPTER 8. DECISION TREES 98

(ii) Calculation of Gain (S,outlook)
The values of the attribute “outlook” are “sunny”, “ overcast” and “rain”. We have to calculate
Entropy (Sv) for v = sunny, v = overcast and v = rain.

Entropy (Ssunny) = −(3/5) × log2 (3/5) − (2/5) × log2 (2/5)
= 0.9710

Entropy (Sovercast) = −(4/4) × log2 (4/4)
= 0

Entropy (Srain) = −(3/5) × log2 (3/5) − (2/5) × log2 (2/5)
= 0.9710

Gain (S, outlook) = Entropy (S) − ∣Ssunny∣
∣S∣ × Entropy (Ssunny)

− ∣Sovercast∣
∣S∣ × Entropy (Sovercast)

− ∣Srain∣
∣S∣ × Entropy (Srain)

= 0.9405 − (5/14) × 0.9710 − (4/14) × 0

− (5/14) × 0.9710

= 0.2469

(iii) Calculation of Gain (S, temperature)
The values of the attribute “temperature” are “hot”, “mild” and “cool”. We have to calculate
Entropy (Sv) for v = hot, v = mild and v = cool.

Entropy (Shot) = −(2/4) × log2 (2/4) − (2/4) × log2 (2/4)
= 1.0000

Entropy (Smild) = −(4/6) × log2 (4/6) − (2/6) × log2 (2/6)
= 0.9186

Entropy (Scool) = −(3/4) × log2 (3/4) − (1/4) × log2 (1/4)
= 0.8113

Gain (S, temperature) = Entropy (S) − ∣Shot∣
∣S∣ × Entropy (Shot)

− ∣Smild∣
∣S∣ × Entropy (Smild)

− ∣Scool∣
∣S∣ × Entropy (Scool)

= 0.9405 − (4/14) × 1.0000 − (6/14) × 0.9186

− (4/14) × 0.8113

= 0.0293

(iv) Calculation of Gain (S,humidity) and Gain (S,wind)
The following information gains can be calculated in a similar way:

Gain (S, humidity) = 0.151

Gain (S, wind) = 0.048



CHAPTER 8. DECISION TREES 99

Step 4

We find the highest information gain whic is the maximum among Gain(S,outlook), Gain(S, temperature),
Gain(S,humidity) and Gain(S,wind). Therefore, we have:

highest information gain = max{0.2469,0.0293,0.151,0.048}
= 0.2469

This corresponds to the feature “outlook”. Therefore, we place “outlook” at the root node. We now
split the root node in Figure 8.7 into three branches according to the values of the feature “outlook”
as in Figure 8.8.

Root node
Table 8.9
outlook?

Node 1

sunny

Node 2

overcast

Node 3

rain

Figure 8.8: Decision tree for data in Table 8.9, after selecting the branching feature at root node

Step 5

Let S(1) = Soutlook=sunny. We have ∣S(1)∣ = 5. The examples in S(1)are shown in Table 8.10.

Day outlook temperature humidity wind playtennis
D1 sunny hot high weak no
D2 sunny hot high strong no
D8 sunny mild high weak no
D9 sunny cool normal weak yes
D11 sunny mild normal strong yes

Table 8.10: Training examples with outlook = “sunny”

Gain(S(1), temp) = Entropy(S(1)) −
∣S(1)temp = hot∣

∣S(1)∣
× Entropy(S(1)temp = hot)

−
∣S(1)temp = mild∣

∣S(1)∣
× Entropy(S(1)temp = mild)

−
∣S(1)temp = cool∣

∣S(1)∣
× Entropy(S(1)temp = cool)

= [−(2/5) log2(2/5) − (3/5) log2(3/5)]
− (2/5) × [−(2/2) log(2/2))]
− (2/5) × [−(1/2) log(1/2) − (1/2) log2(1/2)]
− (1/5) × [−(1/1) log(1/1)]

= 0.5709



CHAPTER 8. DECISION TREES 100

Gain(S(1),hum) = Entropy(S(1)) −
∣S(1)hum = high∣

∣S(1)∣
× Entropy(S(1)hum = high)

−
∣S(1)hum = normal∣

∣S(1)∣
× Entropy(S(1)hum = normal)

= [−(2/5) log2(2/5) − (3/5) log2(3/5)]
− (3/5) × [−(3/3) log(3/3))]
− (2/5) × [−(2/2) log(2/2)]

= 0.9709

Gain(S(1),wind) = Entropy(S(1)) −
∣S(1)wind = weak∣

∣S(1)∣
× Entropy(S(1)wind = weak)

−
∣S(1)wind = strong∣

∣S(1)∣
× Entropy(S(1)wind = strong)

= [−(2/5) log2(2/5) − (3/5) log2(3/5)]
− (3/5) × [−(2/3) log(2/3) − (1/3) log2(1/3))]
− (2/5) × [−(1/2) log(1/2) − (1/2) log(1/2)]

= 0.0110

The maximum of Gain(S(1), temp), Gain(S(1),hum) and Gain(S(1),wind) is Gain(S(1),hum).
Hence we place “humidity” at Node 1 and split this node into two branches according to the values
of the feature “humidity” to get the tree in Figure 8.9.

Root node
Table 8.9
outlook?

Node 1:
humidity?

Node 4

high

Node 5

normal

sunny

Node 2

overcast

Node 3

rain

Figure 8.9: Decision tree for data in Table 8.9, after selecting the branching feature at Node 1

Step 6

It can be seen that all the examples in the the data set corresponding to Node 4 in Figure 8.9 have
the same class label “no” and all the examples corresponding to Node 5 have the same class label
“yes”. So we represent Node 4 as a leaf node with value “no” and Node 5 as a leaf node with value
“yes”. Similarly, all the examples corresponding to Node 2 have the same class label “yes”. So
we convert Node 2 as a leaf node with value “ yes. Finally, let S(2) = Soutlook = rain. The highest
information gain for this data set is Gain(S(2),humidity). The branches resulting from splitting this
node corresponding to the values “high” and “normal” of “humidity” lead to leaf nodes with class
labels “no” and ”yes”. With these changes, we get the tree in Figure 8.10.



CHAPTER 8. DECISION TREES 101

Root node
Table 8.9
outlook?

Node 1:
humidity?

no

high

yes

normal

sunny

yes

overcast

Node 3:
humidity?

no

high

yes

normal

rain

Figure 8.10: Decision tree for data in Table 8.9

8.11 Regression trees
A regression problem is the problem of determining a relation between one or more independent
variables and an output variable which is a real continuous variable and then using the relation
to predict the values of the dependent variables. Regression problems are in general related to
prediction of numerical values of variables. Trees can also be used to make such predictions. A tree
used for making predictions of numerical variables is called a prediction tree or a regression tree.

8.11.1 Example
Using the data in Table 8.11, construct a tree to predict the values of y.

x1 1 3 4 6 10 15 2 7 16 0
x2 12 23 21 10 27 23 35 12 27 17
y 10.1 15.3 11.5 13.9 17.8 23.1 12.7 43.0 17.6 14.9

Table 8.11: Data for regression tree

Solution

We shall construct a raw decision tree (a tree constructed without using any standard algorithm) to
predict the value of y corresponding to any untabulated values of x1 and x2.

Step 1. We arbitrarily split the values of x1 into two sets: One set defined by x1 < 6 and the other
set defined by x1 ≥ 6. This splits the data into two parts. This yields the tree in Figure ??.

x1 1 3 4 2 0
x2 12 23 21 35 17
y 10.1 15.3 11.5 12.7 14.9

Table 8.12: Data for regression tree

Step 2. In Figure 8.12, consider the node specified by Table 8.12. We arbitrarily split the values
of x2 into two sets: one specified by x2 < 21 and one specified by x2 ≥ 21. Similarly, the
node specified by Table 8.13, we split the values of x2 into sets: one specified by x2 < 23



CHAPTER 8. DECISION TREES 102

x1 6 10 15 7 16
x2 10 27 23 12 27
y 13.9 17.8 23.1 43.0 17.6

Table 8.13: Data for regression tree

Tab 8.11

Tab 8.12 Tab 8.13

x1 < 6 x1 ≥ 6

Figure 8.11: Part of a regression tree for Table 8.11

and one specified by x2 ≥ 23. The split data are given in Table 8.14(a) - (d). This gives us
the tree in Figure 8.12.

Tab 8.11

Tabe 8.12 Tab 8.13

x1 < 6 x1 ≥ 6

Tab 8.14(a) Tab 8.14(b)

x2 < 21 x2 ≥ 21

Tab 8.14(c) Tab 8.14(d)

x2 < 23 x2 ≥ 23

Figure 8.12: Part of regression tree for Table 8.11

Step 3. We next make the nodes specified by Table 8.14(a), . . . , Tab 8.14(d) into leaf nodes. In
each of these leaf nodes, we write the average of the values in the corresponding table (this
is a standard procedure). For, example, at Table 8.14(a), we write 1

2
(10.1 + 14.9) = 12.5.

Then we get Figure 8.13.

x1 1 0
x2 12 17
y 10.1 14.9

x1 3 4 2
x2 23 21 35
y 15.3 11.5 12.7

(a) (b)

x1 6 7
x2 10 12
y 13.9 43.0

x1 10 15 16
x2 27 23 27
y 17.8 23.1 17.6

(c) (d)

Table 8.14: Data for regression tree



CHAPTER 8. DECISION TREES 103

x1 < 6 x1 ≥ 6

12.5 13.17

x2 < 21 x2 ≥ 21

28.45 19.5

x2 < 23 x2 ≥ 23

Figure 8.13: A regression tree for Table 8.11

Step 4. Figure 8.13 is the final raw regression tree for predicting the values of y based on the data
in Table 8.11.

8.11.2 An algorithm for constructing regression trees
Starting with a learning sample, three elements are necessary to determine a regression tree:

1. A way to select a split at every intermediate node

2. A rule for determining when a node is terminal

3. A rule for assigning a value for the output variable to every terminal node

Notations

x1, x2, . . . , xn : The input variables
N : Number of samples in the data set
y1, y2, . . . , yN : The values of the output variables
T : A tree
c : A leaf of T
nc : Number of data elements in the leaf c
C : The set of indices of data elements which

are in the leaf c
mc : The mean of the values of y which are in

the leaf c
ST : Sum of squares of errors in T

We have

mc =
1

nc
∑
i∈C

yi

ST = ∑
c∈leaves(T )

∑
i∈C

(yi −mc)2

Algorithm

Step 1. Start with a single node containing all data points. Calculate mc and ST .

Step 1. If all the points in the node have the same value for all the independent variables, stop.

Step 1. Otherwise, search over all binary splits of all variables for the one which will reduce ST as
much as possible.



CHAPTER 8. DECISION TREES 104

(a) If the largest decrease in ST would be less than some threshold δ, or one of the
resulting nodes would contain less than q points, stop and if c is a node where we
have stopped, then assign the value mc to the node.

(b) Otherwise, take that split, creating two new nodes.

Step 1. In each new node, go back to Step 1.

Remarks

1. We have seen entropy and information defined for discrete variables. We can define them for
continuous variables also. But in the case of regression trees, it is more common to use the
sum of squares. The above algorithm is based on sum of squares of errors.

2. The CART algorithm mentioned below searches every distinct value of every predictor vari-
able to find the predictor variable and split value which will reduce ST as much as possible.

3. In the above algorithm, we have given the simplest criteria for stopping growing of trees.
More sophisticated criteria which produce much less error have been developed.

8.11.3 Example
Consider the data given in Table 8.11.

1. Computation of ST for the entire data set. Initially, there is only one node. So, we have:

mc =
1

nc
∑
c∈C

yi

= 1

10
(10.1 + 15.3 +⋯ + 14.9)

= 17.99

ST = ∑
c∈leaves(T )

∑
i∈C

(yi −mc)2

= (10.1 − 17.99)2 + (15.3 − 17.99)2 +⋯ + (14.9 − 17.99)2

= 817.669

2. As suggested in the remarks above, we have to search every distinct value of x1 and x2 to find
the predictor variable and split value which will reduce ST as much as possible.

3. Let us consider the value 6 of x1. This splits the data set into two parts c1 and c2. Let c1 be
the part defined by x1 < 6 and c2 the part defined by x1 ≥ 6. S1 is given in Table 8.12 and S2

by Table 8.13.Now
leaves(T ) = {c1, c2}.

Let T1 be the tree corresponding to this partition. Then

ST1 = ∑
c∈leaves(T1)

∑
i∈C

(yi −mc)2

= ∑
i∈C1

(yi −mc1)2 + ∑
i∈C2

(yi −mc2)2

mc1 =
1

nc1
∑
i∈C1

yi

= 1

5
(10.1 + 15.3 + 11.5 + 12.7 + 14.9)

= 12.9



CHAPTER 8. DECISION TREES 105

mc2 =
1

nc2
∑
i∈C2

yi

= 1

5
(13.9 + 17.8 + 23.1 + 43.0 + 17.6)

= 23.08

ST1 = [(10.1 − 12.9)2 +⋯ + (14.9 − 12.9)2]+
[(13.9 − 23.08)2 +⋯ + (17.6 − 23.08)2]

= 558.588

The reduction in sum of squares of errors is

ST − ST1 = 817.669 − 558.588 = 259.081.

4. In this way, we have compute the reduction in the sum of squares of errors corresponding to
all other values of x1 and each of the values of x2 and choose the one for which the reduction
is maximum.

5. The process has be continued. (Software package may be required to complete the problem.)

8.12 CART algorithm
We have seen how decision trees can be used to create a model that predicts the value of a target (or
dependent variable) based on the values of several input or independent variables.

The CART, or Classification And Regression Trees methodology, was introduced in 1984 by Leo
Breiman, Jerome Friedman, Richard Olshen and Charles Stone as an umbrella term to refer to the
following types of decision trees:

• Classification trees where the target variable is categorical and the tree is used to identify the
“class” within which a target variable would likely fall into.

• Regression trees where the target variable is continuous and tree is used to predict it’s value.

The main elements of CART are:

• Rules for splitting data at a node based on the value of one variable

• Stopping rules for deciding when a branch is terminal and can be split no more

• A prediction for the target variable in each terminal node

8.13 Other decision tree algorithms

8.13.1 The C4.5 algorithm
The C4.5 algorithm is an algorithm developed by Ross Quinlan as an improvement of the ID3
algorithm. The following are some of the improvements incorporated in C4.5.

• Handling both continuous and discrete attributes

• Handling training data with missing attribute values

• Handling attributes with differing costs

• Pruning trees after creation



CHAPTER 8. DECISION TREES 106

8.13.2 The C5.0 algorithm
The C5.0 algorithm represents a further improvement on the C4.5 algorithm. This was also devel-
oped by Ross Quinlan.

• Speed - C5.0 is significantly faster than C4.5.

• Memory usage - C5.0 is more memory efficient than C4.5.

• C5.0 gets similar results to C4.5 with considerably smaller decision trees.

The C5.0 algorithm is one of the most well-known implementations of the the decision tree
algorithm. The source code for a single-threaded version of the algorithm is publicly available,
and it has been incorporated into programs such as R. The C5.0 algorithm has become the industry
standard to produce decision trees.

8.14 Issues in decision tree learning
In thie next feww sections, we discuss some of the practical issues in learning decision trees.

8.15 Avoiding overfitting of data
When we construct a decision tree, the various branches are grown (that is, sub-branches are con-
structed) just deeply enough to perfectly classify the training examples. This leads to difficulties
when there is noise in the data or when the number of training examples are too small. In these
cases the algorithm can produce trees that overfit the training examples.

Definition

We say that a hypothesis overfits the training examples if some other hypothesis that fits the train-
ing examples less well actually performs better over the entire distribution of instances, including
instances beyond the training set.

Impact of overfitting

Figure 8.14 illustrates the impact of overfitting in a typical decision tree learning. From the figure,
we can see that the accuracy of the tree over training examples increases monotonically whereas the
accuracy measured over independent test samples first increases then decreases.

8.15.1 Approaches to avoiding overfitting
The main approach to avoid overfitting is pruning. Pruning is a technique that reduces the size
of decision trees by removing sections of the tree that provide little power to classify instances.
Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by
the reduction of overfitting.

• We may apply pruning earlier, that is, before it reaches the point where it perfectly classifies
the training data.

• We may allow the tree to overfit the data, and then post-prune the true.

Now there is the problem of what criterion is to be used to determine the correct final tree
size. One commonly used criterion is to use a separate set of examples, distinct from the training
examples, to evaluate the utility of post-pruning nodes from the tree.



CHAPTER 8. DECISION TREES 107

Figure 8.14: Impact of overfitting in decision tree learning

Case Temperature Headache Nausea Decision (Flue)

1 high ? no yes
2 very high yes no yes
3 ? no no no
4 high yes yes yes
5 high ? yes no
6 normal yes no no
7 normal no yes no
8 ? yes ? yes

Table 8.15: A dataset with missing attribute values

8.15.2 Reduced error pruning
In reduced-error pruning, we consider each of the decision tress to be a candidate for pruning. Prun-
ing a decision node consists of removing the subtree rooted at that node, making it a leaf node, and
assigning it the most common classification of the training examples affiliated to that node. Nodes
are removed only if the resulting pruned tree performs no worse than the original over validation set.
Nodes are pruned iteratively, always choosing the node whose removal most increases the accuracy
over the validation set. Pruning of nodes is continued until further pruning decreases the accuracy
over the validation set.

8.16 Problem of missing attributes
Table 8.15 shows a dataset with missing attribute values. the missing values are indicated by “?”s.

The following are some of the methods used to handle the problem of missing attributes.

• Deleting cases with missing attribute values

• Replacing a missing attribute value by the most common value of that attribute



CHAPTER 8. DECISION TREES 108

• Assigning all possible values to the missing attribute value

• Replacing a missing attribute value by the mean for numerical attributes

• Assigning to a missing attribute value the corresponding value taken from the closest t cases,
or replacing a missing attribute value by a new value

8.17 Sample questions
(a) Short answer questions

1. Explain the concept of a decision tree with an example.

2. What are the different types of decision trees?

3. Define the entropy of a dataset.

4. Write a formula to compute the entropy of a two-class dataset.

5. Define information gain and Gini index.

6. Give the names of five different decision-tree algorithms.

7. Can decision tree be used for regression? If yes, explain how. If no, explain why.

8. What is the difference between classification and regression trees?

(b) Long answer questions

1. Explain classification tree using an example.

2. Consider the following set of training examples:

Instance Classification a1 a2

1 + T T
2 + T T
3 − T F
4 + F F
5 − F T
6 − F T

(a) What is the entropy of this collection of training examples with respect to the target
function “classification”?

(b) What is the information gain of a2 relative to these training examples?

3. Explain the ID3 algorithm for learning decision trees.

4. Explain CART algorithm.

5. What are issues in decision tree learning? How are they overcome?

6. Describe an algorithm to construct regression trees.

7. What do you mean by information gain and entropy? How is it used to build the decision
trees? Illustrate using an example.

8. Use ID3 algorithm to construct a decision tree for the data in the following table.



CHAPTER 8. DECISION TREES 109

Instance no. Class label x1 x2

1 1 T T
2 1 T T
3 0 T F
4 1 F F
5 0 F T
6 0 F T

9. Use ID3 algorithm to construct a decision tree for the data in the following table.

Gender Car ownership Travel cost Income level Class
(mode of transportation)

Male 0 Cheap Low Bus
Male 1 Cheap Medium Bus
Female 1 Cheap Medium Train
Female 0 Cheap Low Bus
Male 1 Cheap Medium Bus
Male 0 Standard Medium Train
Female 1 Standard Medium Train
Female 1 Expensive High Car
Male 2 Expensive Medium Car
Female 2 Expensive High Car

10. Use ID3 algorithm to construct a decision tree for the data in the following table.

Age Competition Type Class (profit)

Old Yes Software Down
Old No Software Down
Old No Hardware Down
Mid Yes Software Down
Mid Yes Hardware Down
Mid No Hardware Up
Mid No Software Up
New Yes Software Up
New No Hardware Up
New No Software Up

11. Construct a decision tree for the following data.



CHAPTER 8. DECISION TREES 110

Class label (risk) Collateral Income Debt Credit history

high none low high bad
high none middle high unknown
moderate none middle low unknown
high none low low unknown
low none upper low unknown
low adequate upper low unknown
high none low low bad
moderate adequate upper low bad
low none upper low good
low adequate upper high good
high none low high good
moderate none middle high good
low none upper high good
high none middle high bad


