
Chapter 12

Combining multiple learners

In general there are several algorithms for learning the same task. Though these are generally suc-
cessful, no one single algorithm is always the most accurate. Now, we shall discuss models com-
posed of multiple learners that complement each other so that by combining them, we attain higher
accuracy.

12.1 Why combine many learners
There are several reasons why a single learner may not produce accurate results.

• Each learning algorithm carries with it a set of assumptions. This leads to error if the assump-
tions do not hold. We cannot be fully sure whether the assumptions are true in a particular
situation.

• Learning is an ill-posed problem. With finite data, each algorithm may converge to a different
solution and may fail in certain circumstances.

• The performance of a learner may be fine-tuned to get the highest possible accuracy on a
validation set. But this fine-tuning is a complex task and still there are instances on which
even the best learner is not accurate enough.

• It has been proved that there is no single learning algorithm that always produces the most
accurate output.

12.2 Ways to achieve diversity
When many learning algorithms are combined, the individual algorithms in the collection are called
the base learners of the collection.

When we generate multiple base-learners, we want them to be reasonably accurate but do not
require them to be very accurate individually. The base-learners are not chosen for their accuracy,
but for their simplicity. What we care for is the final accuracy when the base- learners are combined,
rather than the accuracies of the bas-learners we started from.

There are several different ways for selecting the base learners.

1. Use different learning algorithms
There may be several learning algorithms for performing a given task. For example, for
classification, one may choose the naive Bayes’ algorithm, or the decision tree algorithm or
even the SVM algorithm.

Different algorithms make different assumptions about the data and lead to different results.
When we decide on a single algorithm, we give emphasis to a single method and ignore all
others. Combining multiple learners based on multiple algorithms, we get better results.

173



CHAPTER 12. COMBINING MULTIPLE LEARNERS 174

2. Use the same algorithm with different hyperparameters
In machine learning, a hyperparameter is a parameter whose value is set before the learning
process begins. By contrast, the values of other parameters are derived via training.

The number of layers, the number of nodes in each layer and the initial weights are all hyper-
parameters in an artificial neural network. When we train multiple base-learners with different
hyperparameter values, we average over it and reduce variance, and therefore error.

3. Use different representations of the input object
For example, in speech recognition, to recognize the uttered words, words may be represented
by the acoustic input. Words can also be represented by video images of the speaker’s lips as
the words are spoken.

Different representations make different characteristics explicit allowing better identification.
In many applications, there are multiple sources of information, and it is desirable to use all
of these data to extract more information and achieve higher accuracy in prediction. We make
separate predictions based on different sources using separate base-learners, then combine
their predictions.

4. Use different training sets to train different base-learners

• This can be done by drawing random training sets from the given sample; this is calledbagging.

• The learners can be trained serially so that instances on which the preceding base-
learners are not accurate are given more emphasis in training later base-learners; ex-
amples are boosting and cascading.

• The partitioning of the training sample can also be done based on locality in the input
space so that each base-learner is trained on instances in a certain local part of the input
space.

5. Multiexpert combination methods
These base learners work in parallel. All of them are trained and then given an instance,
they all give their decisions, and a separate combiner computes the final decision using their
predictions. Examples include voting and its variants.

6. Multistage combination methods
These methods use a serial approach where the next base-learner is trained with or tested on
only the instances where the previous base-learners are not accurate enough.

12.3 Model combination schemes

12.3.1 Voting
This is the simplest procedure for combining the outcomes of several learning algorithms. Let us
examine some special cases of this scheme

1. Binary classification problem
Consider a binary classification problem with class labels −1 and +1. Let there be L base
learners and let x be a test instance. Each of the base learners will assign a class label to x. If
the class label assigned is +1, we say that the learner votes for +1 and that the label +1 gets
a vote. The number of votes obtained by the class labels when the different base learners are
applied is counted. In the voting scheme for combining the learners, the label which gets the
majority votes is assigned to x.



CHAPTER 12. COMBINING MULTIPLE LEARNERS 175

2. Multi-class classification problem
Let there be n class labels C1,C2, . . . ,Cn. Let x be a test instance and let there be L base
learners. Here also, each of the base learners will assign a class label to x and when a class
label is assigned a label, the label gets a vote. In the voting scheme, the class label which gets
the maximum number of votes is assigned to x.

3. Regression
Consider L base learners for predicting the value of a variable y. Let ŷi be the output predicted
by the i-th base learner. The final output is computed as

y = wiŷ1 +w2ŷ2 +⋯ +wLŷL

where w1,w2, . . . ,wL are called the weights attached to the outputs of the various base learn-
ers and they must satisfy the following conditions:

wj ≥ 0 for j = 1,2, . . . , L

w1 +w2 +⋯ +wL = 1.

This is the weighted voting scheme. In simple voting, we take

wi =
1

L
for j = 1,2, . . . , L.

12.3.2 Bagging
Bagging is a voting method whereby base-learners are made different by training them over slightly
different training sets.

Generating L slightly different samples from a given sample is done by bootstrap, where given a
training setX of sizeN , we drawN instances randomly fromX with replacement (see Section ??).
Because sampling is done with replacement, it is possible that some instances are drawn more than
once and that certain instances are not drawn at all. When this is done to generate L samples Xj ,
j = 1, . . . , L, these samples are similar because they are all drawn from the same original sample,
but they are also slightly different due to chance.

The base-learners are trained with these L samples Xj . A learning algorithm is an unstable
algorithm if small changes in the training set causes a large difference in the generated learner.
Bagging, short for bootstrap aggregating, uses bootstrap to generate L training sets, trains L base-
learners using an unstable learning procedure and then during testing, takes an average. Bagging
can be used both for classification and regression. In the case of regression, to be more robust, one
can take the median instead of the average when combining predictions.

Algorithms such as decision trees and multilayer perceptrons are unstable.

12.3.3 Boosting
In bagging, generating complementary base-learners is left to chance and to the unstability of the
learning method. In boosting, we actively try to generate complementary base-learners by training
the next learner on the mistakes of the previous learners. The original boosting algorithm combines
three weak learners to generate a strong learner. A weak learner has error probability less than
1/2, which makes it better than random guessing on a two-class problem, and a strong learner has
arbitrarily small error probability.

The boosting method

1. Let d1, d2, d3 be three learning algorithms for a particular task. Let a large training set X be
given.

2. We randomly divide X into three sets, say X1,X2,X3.



CHAPTER 12. COMBINING MULTIPLE LEARNERS 176

3. We use X1 and train d1.

4. We then take X2 and feed it to d1.

5. We take all instances misclassified by d1 and also as many instances on which d1 is correct
from X2, and these together form the training set of d2.

6. We then take X3 and feed it to d1 and d2.

7. The instances on which d1 and d2 disagree form the training set of d3.

8. During testing, given an instance, we give it to d1 and d2 if they agree, that is the response;
otherwise the response of d3 is taken as the output.

It has been shown that this overall system has reduced error rate, and the error rate can arbitrar-
ily be reduced by using such systems recursively. One disadvantage of the system is thaaaaaat it
requires a very large training sample. An improved algorithm known as AdaBoost (short for “adap-
tive boosting”), uses the same training set over and over and thus need not be large. AdaBoost can
also combine an arbitrary number of base-learners, not three.

12.4 Ensemble learning⋆

The word “ensemble” literally means “a group of things or people acting or taken together as a
whole, especially a group of musicians who regularly play together.”

In machine learning, an ensemble learning method consists of the following two steps:

1. Create different models for solving a particular problem using a given data.

2. Combine the models created to produce improved results.

The different models may be chosen in many different ways:

• The models may be created using appropriate different algorithms like k-NN algorithm, Naive-
Bayes algorithm, decision tree algorithm, etc.

• The models may be created by using the same algorithm but using different splits of the same
dataset into training data and test data.

• The models may be created by assigning different initial values to the parameters in the algo-
rithm as in ANN algorithms.

The models created in the ensemble learning methods are combined in several ways.

• Simple majority voting in classification problems: Every model makes a prediction (votes)
for each test instance and the final output prediction is the one that receives more than half of
the votes.

• Weighted majority voting in classification problem: In weighted voting we count the predic-
tion of the better models multiple times. Finding a reasonable set of weights is up to us.

• Simple averaging in prediction problems: In simple averaging method, for every instance of
test dataset, the average predictions are calculated.

• Weighted averaging in prediction problems: In this method, the prediction of each model is
multiplied by the weight and then their average is calculated.

12.5 Random forest⋆

A random forest is an ensemble learning method where multiple decision trees are constructed and
then they are merged to get a more accurate prediction.



CHAPTER 12. COMBINING MULTIPLE LEARNERS 177

Figure 12.1: Example of random forest with majority voting

12.5.1 Algorithm
Here is an outline of the random forest algorithm.

1. The random forests algorithm generates many classification trees. Each tree is generated as
follows:

(a) If the number of examples in the training set is N , take a sample of N examples at
random - but with replacement, from the original data. This sample will be the training
set for generating the tree.

(b) If there are M input variables, a number m is specified such that at each node, m vari-
ables are selected at random out of the M and the best split on these m is used to split
the node. The value of m is held constant during the generation of the various trees in
the forest.

(c) Each tree is grown to the largest extent possible.

2. To classify a new object from an input vector, put the input vector down each of the trees in
the forest. Each tree gives a classification, and we say the tree “votes” for that class. The
forest chooses the classification

12.5.2 Strengths and weaknesses
Strengths

The following are some of the important strengths of random forests.

• It runs efficiently on large data bases.

• It can handle thousands of input variables without variable deletion.

• It gives estimates of what variables are important in the classification.

• It has an effective method for estimating missing data and maintains accuracy when a large
proportion of the data are missing.

• Generated forests can be saved for future use on other data.



CHAPTER 12. COMBINING MULTIPLE LEARNERS 178

• Prototypes are computed that give information about the relation between the variables and
the classification.

• The capabilities of the above can be extended to unlabeled data, leading to unsupervised
clustering, data views and outlier detection.

• It offers an experimental method for detecting variable interactions.

• Random forest run times are quite fast, and they are able to deal with unbalanced and missing
data.

• They can handle binary features, categorical features, numerical features without any need for
scaling.

• There are lots of excellent, free, and open-source implementations of the random forest algo-
rithm. We can find a good implementation in almost all major ML libraries and toolkits.

Weaknesses

• A weakness of random forest algorithms is that when used for regression they cannot predict
beyond the range in the training data, and that they may over-fit data sets that are particularly
noisy.

• The sizes of the models created by random forests may be very large. It may take hundreds of
megabytes of memory and may be slow to evaluate.

• Random forest models are black boxes that are very hard to interpret.

12.6 Sample questions
(a) Short answer questions

1. Explain the necessity of combining several algorithms for accomplishing a particular task.

2. What is a base learner? How do we select base learners?

(b) Long answer questions

1. Explain the following: (i) voting (ii) bagging (iii) boosting.

2. Explain what is meant by random forests.


